1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556 |
- #!/usr/bin/env python3
- import asyncio
- import base64
- import concurrent.futures
- import time
- from typing import Optional
- import cv2
- import numpy as np
- from fastapi import Response
- from nicegui import app, ui
- # we need two executors to schedule IO and CPU intensive tasks with loop.run_in_executor()
- process_pool_executor = concurrent.futures.ProcessPoolExecutor()
- thread_pool_executor = concurrent.futures.ThreadPoolExecutor()
- # in case you don't have a webcam, this will provide a black placeholder image
- black_1px = 'iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAAAXNSR0IArs4c6QAAAA1JREFUGFdjYGBg+A8AAQQBAHAgZQsAAAAASUVORK5CYII='
- placeholder = Response(content=base64.b64decode(black_1px.encode('ascii')), media_type='image/png')
- # OpenCV is used to access the webcam
- video_capture = cv2.VideoCapture(0)
- def convert(frame: np.ndarray) -> Optional[bytes]:
- _, imencode_image = cv2.imencode('.jpg', frame)
- return imencode_image.tobytes()
- @app.get('/video/frame')
- # thanks to FastAPI's "app.get" it is easy to create a web route which always provides the latest image from OpenCV
- async def grab_video_frame() -> Response:
- loop = asyncio.get_running_loop()
- if not video_capture.isOpened():
- return placeholder
- # video_capture.read() is a blocking function, so we run it in a separate thread it to avoid blocking the event loop
- _, frame = await loop.run_in_executor(thread_pool_executor, video_capture.read)
- if frame is None:
- return placeholder
- # convert() is a cpu intensive function, so we run it in a separate process to avoid blocking the event loop and GIL
- jpeg = await loop.run_in_executor(process_pool_executor, convert, frame)
- if not jpeg:
- return placeholder
- return Response(content=jpeg, media_type='image/jpeg')
- # For non-flickering image updates an interactive image is much better than ui.image().
- video_image = ui.interactive_image().classes('w-full h-full')
- # A timer constantly updates the source of the image.
- # But because the path is always the same, we must force an update by adding the current timestamp to the source.
- ui.timer(interval=0.01, callback=lambda: video_image.set_source(f'/video/frame?{time.time()}'))
- # the process pool executor must be shutdown when the app is closed, otherwise the process will not exit
- app.on_shutdown(lambda: process_pool_executor.shutdown(wait=True, cancel_futures=True))
- ui.run()
|