```python exec import reflex as rx from docs.tutorial.tutorial_utils import ChatappState import docs.tutorial.tutorial_style as style from pcweb.pages.docs import hosting ``` # Final App We will use OpenAI's API to give our chatbot some intelligence. ## Using the API We need to modify our event handler to send a request to the API. ```python exec def qa(question: str, answer: str) -> rx.Component: return rx.box( rx.box(rx.text(question, style=style.question_style), text_align="right"), rx.box(rx.text(answer, style=style.answer_style), text_align="left"), margin_y="1em", width="100%", ) def chat1() -> rx.Component: return rx.box( rx.foreach( ChatappState.chat_history, lambda messages: qa(messages[0], messages[1]) ) ) def action_bar3() -> rx.Component: return rx.hstack( rx.chakra.input( value=ChatappState.question, placeholder="Ask a question", on_change=ChatappState.set_question, style=style.input_style, ), rx.button("Ask", on_click=ChatappState.answer4, style=style.button_style), ) ``` ```python demo box rx.container( chat1(), action_bar3(), ) ``` ```python # state.py import os from openai import OpenAI openai.api_key = os.environ["OPENAI_API_KEY"] ... def answer(self): # Our chatbot has some brains now! client = OpenAI() session = client.chat.completions.create( model="gpt-3.5-turbo", messages=[ \{"role": "user", "content": self.question} ], stop=None, temperature=0.7, stream=True, ) # Add to the answer as the chatbot responds. answer = "" self.chat_history.append((self.question, answer)) # Clear the question input. self.question = "" # Yield here to clear the frontend input before continuing. yield for item in session: if hasattr(item.choices[0].delta, "content"): if item.choices[0].delta.content is None: # presence of 'None' indicates the end of the response break answer += item.choices[0].delta.content self.chat_history[-1] = (self.chat_history[-1][0], answer) yield ``` Finally, we have our chatbot! ## Final Code We wrote all our code in three files, which you can find below. ```python # chatapp.py import reflex as rx from chatapp import style from chatapp.state import State def qa(question: str, answer: str) -> rx.Component: return rx.box( rx.box(rx.text(question, text_align="right"), style=style.question_style), rx.box(rx.text(answer, text_align="left"), style=style.answer_style), margin_y="1em", ) def chat() -> rx.Component: return rx.box( rx.foreach( State.chat_history, lambda messages: qa(messages[0], messages[1]) ) ) def action_bar() -> rx.Component: return rx.hstack( rx.chakra.input( value=State.question, placeholder="Ask a question", on_change=State.set_question, style=style.input_style, ), rx.button("Ask", on_click=State.answer, style=style.button_style), ) def index() -> rx.Component: return rx.container( chat(), action_bar(), ) app = rx.App() app.add_page(index) ``` ```python # state.py import reflex as rx import os import openai openai.api_key = os.environ["OPENAI_API_KEY"] class State(rx.State): # The current question being asked. question: str # Keep track of the chat history as a list of (question, answer) tuples. chat_history: list[tuple[str, str]] def answer(self): # Our chatbot has some brains now! client = OpenAI() session = client.chat.completions.create( model="gpt-3.5-turbo", messages=[ \{"role": "user", "content": self.question} ], stop=None, temperature=0.7, stream=True, ) # Add to the answer as the chatbot responds. answer = "" self.chat_history.append((self.question, answer)) # Clear the question input. self.question = "" # Yield here to clear the frontend input before continuing. yield for item in session: if hasattr(item.choices[0].delta, "content"): if item.choices[0].delta.content is None: # presence of 'None' indicates the end of the response break answer += item.choices[0].delta.content self.chat_history[-1] = (self.chat_history[-1][0], answer) yield ``` ```python # style.py # Common styles for questions and answers. shadow = "rgba(0, 0, 0, 0.15) 0px 2px 8px" chat_margin = "20%" message_style = dict( padding="1em", border_radius="5px", margin_y="0.5em", box_shadow=shadow, ) # Set specific styles for questions and answers. question_style = message_style | dict(bg="#F5EFFE", margin_left=chat_margin) answer_style = message_style | dict(bg="#DEEAFD", margin_right=chat_margin) ``` ## Next Steps Congratulations! You have built your first chatbot. From here, you can read through the rest of the documentations to learn about Reflex in more detail. The best way to learn is to build something, so try to build your own app using this as a starting point! ## One More Thing With our hosting service, you can deploy this app with a single command within minutes. Check out our [Hosting Quick Start]({hosting.deploy_quick_start.path}).