123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396 |
- import typing
- from typing import Dict, List
- import cloudpickle
- import pytest
- from pynecone.base import Base
- from pynecone.state import State
- from pynecone.var import BaseVar, ComputedVar, ImportVar, PCDict, PCList, Var
- test_vars = [
- BaseVar(name="prop1", type_=int),
- BaseVar(name="key", type_=str),
- BaseVar(name="value", type_=str, state="state"),
- BaseVar(name="local", type_=str, state="state", is_local=True),
- BaseVar(name="local2", type_=str, is_local=True),
- ]
- test_import_vars = [ImportVar(tag="DataGrid"), ImportVar(tag="DataGrid", alias="Grid")]
- @pytest.fixture
- def TestObj():
- class TestObj(Base):
- foo: int
- bar: str
- return TestObj
- @pytest.fixture
- def ParentState(TestObj):
- class ParentState(State):
- foo: int
- bar: int
- @ComputedVar
- def var_without_annotation(self):
- return TestObj
- return ParentState
- @pytest.fixture
- def ChildState(ParentState, TestObj):
- class ChildState(ParentState):
- @ComputedVar
- def var_without_annotation(self):
- return TestObj
- return ChildState
- @pytest.fixture
- def GrandChildState(ChildState, TestObj):
- class GrandChildState(ChildState):
- @ComputedVar
- def var_without_annotation(self):
- return TestObj
- return GrandChildState
- @pytest.fixture
- def StateWithAnyVar(TestObj):
- class StateWithAnyVar(State):
- @ComputedVar
- def var_without_annotation(self) -> typing.Any:
- return TestObj
- return StateWithAnyVar
- @pytest.fixture
- def StateWithCorrectVarAnnotation():
- class StateWithCorrectVarAnnotation(State):
- @ComputedVar
- def var_with_annotation(self) -> str:
- return "Correct annotation"
- return StateWithCorrectVarAnnotation
- @pytest.fixture
- def StateWithWrongVarAnnotation(TestObj):
- class StateWithWrongVarAnnotation(State):
- @ComputedVar
- def var_with_annotation(self) -> str:
- return TestObj
- return StateWithWrongVarAnnotation
- @pytest.mark.parametrize(
- "prop,expected",
- zip(
- test_vars,
- [
- "prop1",
- "key",
- "state.value",
- "state.local",
- "local2",
- ],
- ),
- )
- def test_full_name(prop, expected):
- """Test that the full name of a var is correct.
- Args:
- prop: The var to test.
- expected: The expected full name.
- """
- assert prop.full_name == expected
- @pytest.mark.parametrize(
- "prop,expected",
- zip(
- test_vars,
- ["{prop1}", "{key}", "{state.value}", "state.local", "local2"],
- ),
- )
- def test_str(prop, expected):
- """Test that the string representation of a var is correct.
- Args:
- prop: The var to test.
- expected: The expected string representation.
- """
- assert str(prop) == expected
- @pytest.mark.parametrize(
- "prop,expected",
- [
- (BaseVar(name="p", type_=int), 0),
- (BaseVar(name="p", type_=float), 0.0),
- (BaseVar(name="p", type_=str), ""),
- (BaseVar(name="p", type_=bool), False),
- (BaseVar(name="p", type_=list), []),
- (BaseVar(name="p", type_=dict), {}),
- (BaseVar(name="p", type_=tuple), ()),
- (BaseVar(name="p", type_=set), set()),
- ],
- )
- def test_default_value(prop, expected):
- """Test that the default value of a var is correct.
- Args:
- prop: The var to test.
- expected: The expected default value.
- """
- assert prop.get_default_value() == expected
- @pytest.mark.parametrize(
- "prop,expected",
- zip(
- test_vars,
- [
- "set_prop1",
- "set_key",
- "state.set_value",
- "state.set_local",
- "set_local2",
- ],
- ),
- )
- def test_get_setter(prop, expected):
- """Test that the name of the setter function of a var is correct.
- Args:
- prop: The var to test.
- expected: The expected name of the setter function.
- """
- assert prop.get_setter_name() == expected
- @pytest.mark.parametrize(
- "value,expected",
- [
- (None, None),
- (1, BaseVar(name="1", type_=int, is_local=True)),
- ("key", BaseVar(name="key", type_=str, is_local=True)),
- (3.14, BaseVar(name="3.14", type_=float, is_local=True)),
- ([1, 2, 3], BaseVar(name="[1, 2, 3]", type_=list, is_local=True)),
- (
- {"a": 1, "b": 2},
- BaseVar(name='{"a": 1, "b": 2}', type_=dict, is_local=True),
- ),
- ],
- )
- def test_create(value, expected):
- """Test the var create function.
- Args:
- value: The value to create a var from.
- expected: The expected name of the setter function.
- """
- prop = Var.create(value)
- if value is None:
- assert prop == expected
- else:
- assert prop.equals(expected) # type: ignore
- def test_create_type_error():
- """Test the var create function when inputs type error."""
- class ErrorType:
- pass
- value = ErrorType()
- with pytest.raises(TypeError) as exception:
- Var.create(value)
- assert (
- exception.value.args[0]
- == f"To create a Var must be Var or JSON-serializable. Got {value} of type {type(value)}."
- )
- def v(value) -> Var:
- val = Var.create(value)
- assert val is not None
- return val
- def test_basic_operations(TestObj):
- """Test the var operations.
- Args:
- TestObj: The test object.
- """
- assert str(v(1) == v(2)) == "{(1 === 2)}"
- assert str(v(1) != v(2)) == "{(1 !== 2)}"
- assert str(v(1) < v(2)) == "{(1 < 2)}"
- assert str(v(1) <= v(2)) == "{(1 <= 2)}"
- assert str(v(1) > v(2)) == "{(1 > 2)}"
- assert str(v(1) >= v(2)) == "{(1 >= 2)}"
- assert str(v(1) + v(2)) == "{(1 + 2)}"
- assert str(v(1) - v(2)) == "{(1 - 2)}"
- assert str(v(1) * v(2)) == "{(1 * 2)}"
- assert str(v(1) / v(2)) == "{(1 / 2)}"
- assert str(v(1) // v(2)) == "{Math.floor(1 / 2)}"
- assert str(v(1) % v(2)) == "{(1 % 2)}"
- assert str(v(1) ** v(2)) == "{Math.pow(1 , 2)}"
- assert str(v(1) & v(2)) == "{(1 && 2)}"
- assert str(v(1) | v(2)) == "{(1 || 2)}"
- assert str(v([1, 2, 3])[v(0)]) == "{[1, 2, 3].at(0)}"
- assert str(v({"a": 1, "b": 2})["a"]) == '{{"a": 1, "b": 2}["a"]}'
- assert (
- str(BaseVar(name="foo", state="state", type_=TestObj).bar) == "{state.foo.bar}"
- )
- assert str(abs(v(1))) == "{Math.abs(1)}"
- assert str(v([1, 2, 3]).length()) == "{[1, 2, 3].length}"
- def test_var_indexing_lists():
- """Test that we can index into list vars."""
- lst = BaseVar(name="lst", type_=List[int])
- # Test basic indexing.
- assert str(lst[0]) == "{lst.at(0)}"
- assert str(lst[1]) == "{lst.at(1)}"
- # Test negative indexing.
- assert str(lst[-1]) == "{lst.at(-1)}"
- # Test non-integer indexing raises an error.
- with pytest.raises(TypeError):
- lst["a"]
- with pytest.raises(TypeError):
- lst[1.5]
- def test_var_list_slicing():
- """Test that we can slice into list vars."""
- lst = BaseVar(name="lst", type_=List[int])
- assert str(lst[:1]) == "{lst.slice(0, 1)}"
- assert str(lst[:1]) == "{lst.slice(0, 1)}"
- assert str(lst[:]) == "{lst.slice(0, undefined)}"
- def test_dict_indexing():
- """Test that we can index into dict vars."""
- dct = BaseVar(name="dct", type_=Dict[str, int])
- # Check correct indexing.
- assert str(dct["a"]) == '{dct["a"]}'
- assert str(dct["asdf"]) == '{dct["asdf"]}'
- @pytest.mark.parametrize(
- "fixture,full_name",
- [
- ("ParentState", "parent_state.var_without_annotation"),
- ("ChildState", "parent_state.child_state.var_without_annotation"),
- (
- "GrandChildState",
- "parent_state.child_state.grand_child_state.var_without_annotation",
- ),
- ("StateWithAnyVar", "state_with_any_var.var_without_annotation"),
- ],
- )
- def test_computed_var_without_annotation_error(request, fixture, full_name):
- """Test that a type error is thrown when an attribute of a computed var is
- accessed without annotating the computed var.
- Args:
- request: Fixture Request.
- fixture: The state fixture.
- full_name: The full name of the state var.
- """
- with pytest.raises(TypeError) as err:
- state = request.getfixturevalue(fixture)
- state.var_without_annotation.foo
- assert (
- err.value.args[0]
- == f"You must provide an annotation for the state var `{full_name}`. Annotation cannot be `typing.Any`"
- )
- @pytest.mark.parametrize(
- "fixture,full_name",
- [
- (
- "StateWithCorrectVarAnnotation",
- "state_with_correct_var_annotation.var_with_annotation",
- ),
- (
- "StateWithWrongVarAnnotation",
- "state_with_wrong_var_annotation.var_with_annotation",
- ),
- ],
- )
- def test_computed_var_with_annotation_error(request, fixture, full_name):
- """Test that an Attribute error is thrown when a non-existent attribute of an annotated computed var is
- accessed or when the wrong annotation is provided to a computed var.
- Args:
- request: Fixture Request.
- fixture: The state fixture.
- full_name: The full name of the state var.
- """
- with pytest.raises(AttributeError) as err:
- state = request.getfixturevalue(fixture)
- state.var_with_annotation.foo
- assert (
- err.value.args[0]
- == f"The State var `{full_name}` has no attribute 'foo' or may have been annotated wrongly.\n"
- f"original message: 'ComputedVar' object has no attribute 'foo'"
- )
- def test_pickleable_pc_list():
- """Test that PCList is pickleable."""
- pc_list = PCList(
- original_list=[1, 2, 3], reassign_field=lambda x: x, field_name="random"
- )
- pickled_list = cloudpickle.dumps(pc_list)
- assert cloudpickle.loads(pickled_list) == pc_list
- def test_pickleable_pc_dict():
- """Test that PCDict is pickleable."""
- pc_dict = PCDict(
- original_dict={1: 2, 3: 4}, reassign_field=lambda x: x, field_name="random"
- )
- pickled_dict = cloudpickle.dumps(pc_dict)
- assert cloudpickle.loads(pickled_dict) == pc_dict
- @pytest.mark.parametrize(
- "import_var,expected",
- zip(
- test_import_vars,
- [
- "DataGrid",
- "DataGrid as Grid",
- ],
- ),
- )
- def test_import_var(import_var, expected):
- """Test that the import var name is computed correctly.
- Args:
- import_var: The import var.
- expected: expected name
- """
- assert import_var.name == expected
|