1
0
Эх сурвалжийг харах

Bugfix for properly rendering datatables (#638)

Elijah Ahianyo 2 жил өмнө
parent
commit
e106b7aedf

+ 200 - 3
poetry.lock

@@ -1,4 +1,4 @@
-# This file is automatically @generated by Poetry 1.4.0 and should not be changed by hand.
+# This file is automatically @generated by Poetry and should not be changed by hand.
 
 [[package]]
 name = "anyio"
@@ -454,6 +454,85 @@ files = [
 [package.dependencies]
 setuptools = "*"
 
+[[package]]
+name = "numpy"
+version = "1.21.6"
+description = "NumPy is the fundamental package for array computing with Python."
+category = "dev"
+optional = false
+python-versions = ">=3.7,<3.11"
+files = [
+    {file = "numpy-1.21.6-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:8737609c3bbdd48e380d463134a35ffad3b22dc56295eff6f79fd85bd0eeeb25"},
+    {file = "numpy-1.21.6-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:fdffbfb6832cd0b300995a2b08b8f6fa9f6e856d562800fea9182316d99c4e8e"},
+    {file = "numpy-1.21.6-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3820724272f9913b597ccd13a467cc492a0da6b05df26ea09e78b171a0bb9da6"},
+    {file = "numpy-1.21.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f17e562de9edf691a42ddb1eb4a5541c20dd3f9e65b09ded2beb0799c0cf29bb"},
+    {file = "numpy-1.21.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5f30427731561ce75d7048ac254dbe47a2ba576229250fb60f0fb74db96501a1"},
+    {file = "numpy-1.21.6-cp310-cp310-win32.whl", hash = "sha256:d4bf4d43077db55589ffc9009c0ba0a94fa4908b9586d6ccce2e0b164c86303c"},
+    {file = "numpy-1.21.6-cp310-cp310-win_amd64.whl", hash = "sha256:d136337ae3cc69aa5e447e78d8e1514be8c3ec9b54264e680cf0b4bd9011574f"},
+    {file = "numpy-1.21.6-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:6aaf96c7f8cebc220cdfc03f1d5a31952f027dda050e5a703a0d1c396075e3e7"},
+    {file = "numpy-1.21.6-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:67c261d6c0a9981820c3a149d255a76918278a6b03b6a036800359aba1256d46"},
+    {file = "numpy-1.21.6-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:a6be4cb0ef3b8c9250c19cc122267263093eee7edd4e3fa75395dfda8c17a8e2"},
+    {file = "numpy-1.21.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7c4068a8c44014b2d55f3c3f574c376b2494ca9cc73d2f1bd692382b6dffe3db"},
+    {file = "numpy-1.21.6-cp37-cp37m-win32.whl", hash = "sha256:7c7e5fa88d9ff656e067876e4736379cc962d185d5cd808014a8a928d529ef4e"},
+    {file = "numpy-1.21.6-cp37-cp37m-win_amd64.whl", hash = "sha256:bcb238c9c96c00d3085b264e5c1a1207672577b93fa666c3b14a45240b14123a"},
+    {file = "numpy-1.21.6-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:82691fda7c3f77c90e62da69ae60b5ac08e87e775b09813559f8901a88266552"},
+    {file = "numpy-1.21.6-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:643843bcc1c50526b3a71cd2ee561cf0d8773f062c8cbaf9ffac9fdf573f83ab"},
+    {file = "numpy-1.21.6-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:357768c2e4451ac241465157a3e929b265dfac85d9214074985b1786244f2ef3"},
+    {file = "numpy-1.21.6-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9f411b2c3f3d76bba0865b35a425157c5dcf54937f82bbeb3d3c180789dd66a6"},
+    {file = "numpy-1.21.6-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:4aa48afdce4660b0076a00d80afa54e8a97cd49f457d68a4342d188a09451c1a"},
+    {file = "numpy-1.21.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d6a96eef20f639e6a97d23e57dd0c1b1069a7b4fd7027482a4c5c451cd7732f4"},
+    {file = "numpy-1.21.6-cp38-cp38-win32.whl", hash = "sha256:5c3c8def4230e1b959671eb959083661b4a0d2e9af93ee339c7dada6759a9470"},
+    {file = "numpy-1.21.6-cp38-cp38-win_amd64.whl", hash = "sha256:bf2ec4b75d0e9356edea834d1de42b31fe11f726a81dfb2c2112bc1eaa508fcf"},
+    {file = "numpy-1.21.6-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:4391bd07606be175aafd267ef9bea87cf1b8210c787666ce82073b05f202add1"},
+    {file = "numpy-1.21.6-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:67f21981ba2f9d7ba9ade60c9e8cbaa8cf8e9ae51673934480e45cf55e953673"},
+    {file = "numpy-1.21.6-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ee5ec40fdd06d62fe5d4084bef4fd50fd4bb6bfd2bf519365f569dc470163ab0"},
+    {file = "numpy-1.21.6-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:1dbe1c91269f880e364526649a52eff93ac30035507ae980d2fed33aaee633ac"},
+    {file = "numpy-1.21.6-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:d9caa9d5e682102453d96a0ee10c7241b72859b01a941a397fd965f23b3e016b"},
+    {file = "numpy-1.21.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:58459d3bad03343ac4b1b42ed14d571b8743dc80ccbf27444f266729df1d6f5b"},
+    {file = "numpy-1.21.6-cp39-cp39-win32.whl", hash = "sha256:7f5ae4f304257569ef3b948810816bc87c9146e8c446053539947eedeaa32786"},
+    {file = "numpy-1.21.6-cp39-cp39-win_amd64.whl", hash = "sha256:e31f0bb5928b793169b87e3d1e070f2342b22d5245c755e2b81caa29756246c3"},
+    {file = "numpy-1.21.6-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dd1c8f6bd65d07d3810b90d02eba7997e32abbdf1277a481d698969e921a3be0"},
+    {file = "numpy-1.21.6.zip", hash = "sha256:ecb55251139706669fdec2ff073c98ef8e9a84473e51e716211b41aa0f18e656"},
+]
+
+[[package]]
+name = "numpy"
+version = "1.24.2"
+description = "Fundamental package for array computing in Python"
+category = "dev"
+optional = false
+python-versions = ">=3.8"
+files = [
+    {file = "numpy-1.24.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:eef70b4fc1e872ebddc38cddacc87c19a3709c0e3e5d20bf3954c147b1dd941d"},
+    {file = "numpy-1.24.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e8d2859428712785e8a8b7d2b3ef0a1d1565892367b32f915c4a4df44d0e64f5"},
+    {file = "numpy-1.24.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6524630f71631be2dabe0c541e7675db82651eb998496bbe16bc4f77f0772253"},
+    {file = "numpy-1.24.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a51725a815a6188c662fb66fb32077709a9ca38053f0274640293a14fdd22978"},
+    {file = "numpy-1.24.2-cp310-cp310-win32.whl", hash = "sha256:2620e8592136e073bd12ee4536149380695fbe9ebeae845b81237f986479ffc9"},
+    {file = "numpy-1.24.2-cp310-cp310-win_amd64.whl", hash = "sha256:97cf27e51fa078078c649a51d7ade3c92d9e709ba2bfb97493007103c741f1d0"},
+    {file = "numpy-1.24.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7de8fdde0003f4294655aa5d5f0a89c26b9f22c0a58790c38fae1ed392d44a5a"},
+    {file = "numpy-1.24.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4173bde9fa2a005c2c6e2ea8ac1618e2ed2c1c6ec8a7657237854d42094123a0"},
+    {file = "numpy-1.24.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4cecaed30dc14123020f77b03601559fff3e6cd0c048f8b5289f4eeabb0eb281"},
+    {file = "numpy-1.24.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a23f8440561a633204a67fb44617ce2a299beecf3295f0d13c495518908e910"},
+    {file = "numpy-1.24.2-cp311-cp311-win32.whl", hash = "sha256:e428c4fbfa085f947b536706a2fc349245d7baa8334f0c5723c56a10595f9b95"},
+    {file = "numpy-1.24.2-cp311-cp311-win_amd64.whl", hash = "sha256:557d42778a6869c2162deb40ad82612645e21d79e11c1dc62c6e82a2220ffb04"},
+    {file = "numpy-1.24.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d0a2db9d20117bf523dde15858398e7c0858aadca7c0f088ac0d6edd360e9ad2"},
+    {file = "numpy-1.24.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:c72a6b2f4af1adfe193f7beb91ddf708ff867a3f977ef2ec53c0ffb8283ab9f5"},
+    {file = "numpy-1.24.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c29e6bd0ec49a44d7690ecb623a8eac5ab8a923bce0bea6293953992edf3a76a"},
+    {file = "numpy-1.24.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2eabd64ddb96a1239791da78fa5f4e1693ae2dadc82a76bc76a14cbb2b966e96"},
+    {file = "numpy-1.24.2-cp38-cp38-win32.whl", hash = "sha256:e3ab5d32784e843fc0dd3ab6dcafc67ef806e6b6828dc6af2f689be0eb4d781d"},
+    {file = "numpy-1.24.2-cp38-cp38-win_amd64.whl", hash = "sha256:76807b4063f0002c8532cfeac47a3068a69561e9c8715efdad3c642eb27c0756"},
+    {file = "numpy-1.24.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4199e7cfc307a778f72d293372736223e39ec9ac096ff0a2e64853b866a8e18a"},
+    {file = "numpy-1.24.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:adbdce121896fd3a17a77ab0b0b5eedf05a9834a18699db6829a64e1dfccca7f"},
+    {file = "numpy-1.24.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:889b2cc88b837d86eda1b17008ebeb679d82875022200c6e8e4ce6cf549b7acb"},
+    {file = "numpy-1.24.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f64bb98ac59b3ea3bf74b02f13836eb2e24e48e0ab0145bbda646295769bd780"},
+    {file = "numpy-1.24.2-cp39-cp39-win32.whl", hash = "sha256:63e45511ee4d9d976637d11e6c9864eae50e12dc9598f531c035265991910468"},
+    {file = "numpy-1.24.2-cp39-cp39-win_amd64.whl", hash = "sha256:a77d3e1163a7770164404607b7ba3967fb49b24782a6ef85d9b5f54126cc39e5"},
+    {file = "numpy-1.24.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:92011118955724465fb6853def593cf397b4a1367495e0b59a7e69d40c4eb71d"},
+    {file = "numpy-1.24.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f9006288bcf4895917d02583cf3411f98631275bc67cce355a7f39f8c14338fa"},
+    {file = "numpy-1.24.2-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:150947adbdfeceec4e5926d956a06865c1c690f2fd902efede4ca6fe2e657c3f"},
+    {file = "numpy-1.24.2.tar.gz", hash = "sha256:003a9f530e880cb2cd177cba1af7220b9aa42def9c4afc2a2fc3ee6be7eb2b22"},
+]
+
 [[package]]
 name = "packaging"
 version = "23.0"
@@ -466,6 +545,97 @@ files = [
     {file = "packaging-23.0.tar.gz", hash = "sha256:b6ad297f8907de0fa2fe1ccbd26fdaf387f5f47c7275fedf8cce89f99446cf97"},
 ]
 
+[[package]]
+name = "pandas"
+version = "1.1.5"
+description = "Powerful data structures for data analysis, time series, and statistics"
+category = "dev"
+optional = false
+python-versions = ">=3.6.1"
+files = [
+    {file = "pandas-1.1.5-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:bf23a3b54d128b50f4f9d4675b3c1857a688cc6731a32f931837d72effb2698d"},
+    {file = "pandas-1.1.5-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:5a780260afc88268a9d3ac3511d8f494fdcf637eece62fb9eb656a63d53eb7ca"},
+    {file = "pandas-1.1.5-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:b61080750d19a0122469ab59b087380721d6b72a4e7d962e4d7e63e0c4504814"},
+    {file = "pandas-1.1.5-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:0de3ddb414d30798cbf56e642d82cac30a80223ad6fe484d66c0ce01a84d6f2f"},
+    {file = "pandas-1.1.5-cp36-cp36m-win32.whl", hash = "sha256:70865f96bb38fec46f7ebd66d4b5cfd0aa6b842073f298d621385ae3898d28b5"},
+    {file = "pandas-1.1.5-cp36-cp36m-win_amd64.whl", hash = "sha256:19a2148a1d02791352e9fa637899a78e371a3516ac6da5c4edc718f60cbae648"},
+    {file = "pandas-1.1.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:26fa92d3ac743a149a31b21d6f4337b0594b6302ea5575b37af9ca9611e8981a"},
+    {file = "pandas-1.1.5-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:c16d59c15d946111d2716856dd5479221c9e4f2f5c7bc2d617f39d870031e086"},
+    {file = "pandas-1.1.5-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:3be7a7a0ca71a2640e81d9276f526bca63505850add10206d0da2e8a0a325dae"},
+    {file = "pandas-1.1.5-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:573fba5b05bf2c69271a32e52399c8de599e4a15ab7cec47d3b9c904125ab788"},
+    {file = "pandas-1.1.5-cp37-cp37m-win32.whl", hash = "sha256:21b5a2b033380adbdd36b3116faaf9a4663e375325831dac1b519a44f9e439bb"},
+    {file = "pandas-1.1.5-cp37-cp37m-win_amd64.whl", hash = "sha256:24c7f8d4aee71bfa6401faeba367dd654f696a77151a8a28bc2013f7ced4af98"},
+    {file = "pandas-1.1.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:2860a97cbb25444ffc0088b457da0a79dc79f9c601238a3e0644312fcc14bf11"},
+    {file = "pandas-1.1.5-cp38-cp38-manylinux1_i686.whl", hash = "sha256:5008374ebb990dad9ed48b0f5d0038124c73748f5384cc8c46904dace27082d9"},
+    {file = "pandas-1.1.5-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:2c2f7c670ea4e60318e4b7e474d56447cf0c7d83b3c2a5405a0dbb2600b9c48e"},
+    {file = "pandas-1.1.5-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:0a643bae4283a37732ddfcecab3f62dd082996021b980f580903f4e8e01b3c5b"},
+    {file = "pandas-1.1.5-cp38-cp38-win32.whl", hash = "sha256:5447ea7af4005b0daf695a316a423b96374c9c73ffbd4533209c5ddc369e644b"},
+    {file = "pandas-1.1.5-cp38-cp38-win_amd64.whl", hash = "sha256:4c62e94d5d49db116bef1bd5c2486723a292d79409fc9abd51adf9e05329101d"},
+    {file = "pandas-1.1.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:731568be71fba1e13cae212c362f3d2ca8932e83cb1b85e3f1b4dd77d019254a"},
+    {file = "pandas-1.1.5-cp39-cp39-manylinux1_i686.whl", hash = "sha256:c61c043aafb69329d0f961b19faa30b1dab709dd34c9388143fc55680059e55a"},
+    {file = "pandas-1.1.5-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:2b1c6cd28a0dfda75c7b5957363333f01d370936e4c6276b7b8e696dd500582a"},
+    {file = "pandas-1.1.5-cp39-cp39-win32.whl", hash = "sha256:c94ff2780a1fd89f190390130d6d36173ca59fcfb3fe0ff596f9a56518191ccb"},
+    {file = "pandas-1.1.5-cp39-cp39-win_amd64.whl", hash = "sha256:edda9bacc3843dfbeebaf7a701763e68e741b08fccb889c003b0a52f0ee95782"},
+    {file = "pandas-1.1.5.tar.gz", hash = "sha256:f10fc41ee3c75a474d3bdf68d396f10782d013d7f67db99c0efbfd0acb99701b"},
+]
+
+[package.dependencies]
+numpy = ">=1.15.4"
+python-dateutil = ">=2.7.3"
+pytz = ">=2017.2"
+
+[package.extras]
+test = ["hypothesis (>=3.58)", "pytest (>=4.0.2)", "pytest-xdist"]
+
+[[package]]
+name = "pandas"
+version = "1.5.3"
+description = "Powerful data structures for data analysis, time series, and statistics"
+category = "dev"
+optional = false
+python-versions = ">=3.8"
+files = [
+    {file = "pandas-1.5.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3749077d86e3a2f0ed51367f30bf5b82e131cc0f14260c4d3e499186fccc4406"},
+    {file = "pandas-1.5.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:972d8a45395f2a2d26733eb8d0f629b2f90bebe8e8eddbb8829b180c09639572"},
+    {file = "pandas-1.5.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:50869a35cbb0f2e0cd5ec04b191e7b12ed688874bd05dd777c19b28cbea90996"},
+    {file = "pandas-1.5.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c3ac844a0fe00bfaeb2c9b51ab1424e5c8744f89860b138434a363b1f620f354"},
+    {file = "pandas-1.5.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a0a56cef15fd1586726dace5616db75ebcfec9179a3a55e78f72c5639fa2a23"},
+    {file = "pandas-1.5.3-cp310-cp310-win_amd64.whl", hash = "sha256:478ff646ca42b20376e4ed3fa2e8d7341e8a63105586efe54fa2508ee087f328"},
+    {file = "pandas-1.5.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:6973549c01ca91ec96199e940495219c887ea815b2083722821f1d7abfa2b4dc"},
+    {file = "pandas-1.5.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c39a8da13cede5adcd3be1182883aea1c925476f4e84b2807a46e2775306305d"},
+    {file = "pandas-1.5.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f76d097d12c82a535fda9dfe5e8dd4127952b45fea9b0276cb30cca5ea313fbc"},
+    {file = "pandas-1.5.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e474390e60ed609cec869b0da796ad94f420bb057d86784191eefc62b65819ae"},
+    {file = "pandas-1.5.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5f2b952406a1588ad4cad5b3f55f520e82e902388a6d5a4a91baa8d38d23c7f6"},
+    {file = "pandas-1.5.3-cp311-cp311-win_amd64.whl", hash = "sha256:bc4c368f42b551bf72fac35c5128963a171b40dce866fb066540eeaf46faa003"},
+    {file = "pandas-1.5.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:14e45300521902689a81f3f41386dc86f19b8ba8dd5ac5a3c7010ef8d2932813"},
+    {file = "pandas-1.5.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9842b6f4b8479e41968eced654487258ed81df7d1c9b7b870ceea24ed9459b31"},
+    {file = "pandas-1.5.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:26d9c71772c7afb9d5046e6e9cf42d83dd147b5cf5bcb9d97252077118543792"},
+    {file = "pandas-1.5.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5fbcb19d6fceb9e946b3e23258757c7b225ba450990d9ed63ccceeb8cae609f7"},
+    {file = "pandas-1.5.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:565fa34a5434d38e9d250af3c12ff931abaf88050551d9fbcdfafca50d62babf"},
+    {file = "pandas-1.5.3-cp38-cp38-win32.whl", hash = "sha256:87bd9c03da1ac870a6d2c8902a0e1fd4267ca00f13bc494c9e5a9020920e1d51"},
+    {file = "pandas-1.5.3-cp38-cp38-win_amd64.whl", hash = "sha256:41179ce559943d83a9b4bbacb736b04c928b095b5f25dd2b7389eda08f46f373"},
+    {file = "pandas-1.5.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c74a62747864ed568f5a82a49a23a8d7fe171d0c69038b38cedf0976831296fa"},
+    {file = "pandas-1.5.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c4c00e0b0597c8e4f59e8d461f797e5d70b4d025880516a8261b2817c47759ee"},
+    {file = "pandas-1.5.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a50d9a4336a9621cab7b8eb3fb11adb82de58f9b91d84c2cd526576b881a0c5a"},
+    {file = "pandas-1.5.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dd05f7783b3274aa206a1af06f0ceed3f9b412cf665b7247eacd83be41cf7bf0"},
+    {file = "pandas-1.5.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9f69c4029613de47816b1bb30ff5ac778686688751a5e9c99ad8c7031f6508e5"},
+    {file = "pandas-1.5.3-cp39-cp39-win32.whl", hash = "sha256:7cec0bee9f294e5de5bbfc14d0573f65526071029d036b753ee6507d2a21480a"},
+    {file = "pandas-1.5.3-cp39-cp39-win_amd64.whl", hash = "sha256:dfd681c5dc216037e0b0a2c821f5ed99ba9f03ebcf119c7dac0e9a7b960b9ec9"},
+    {file = "pandas-1.5.3.tar.gz", hash = "sha256:74a3fd7e5a7ec052f183273dc7b0acd3a863edf7520f5d3a1765c04ffdb3b0b1"},
+]
+
+[package.dependencies]
+numpy = [
+    {version = ">=1.20.3", markers = "python_version < \"3.10\""},
+    {version = ">=1.21.0", markers = "python_version >= \"3.10\""},
+    {version = ">=1.23.2", markers = "python_version >= \"3.11\""},
+]
+python-dateutil = ">=2.8.1"
+pytz = ">=2020.1"
+
+[package.extras]
+test = ["hypothesis (>=5.5.3)", "pytest (>=6.0)", "pytest-xdist (>=1.31)"]
+
 [[package]]
 name = "pathspec"
 version = "0.11.0"
@@ -709,6 +879,21 @@ pytest = ">=5.0"
 [package.extras]
 dev = ["pre-commit", "pytest-asyncio", "tox"]
 
+[[package]]
+name = "python-dateutil"
+version = "2.8.2"
+description = "Extensions to the standard Python datetime module"
+category = "dev"
+optional = false
+python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7"
+files = [
+    {file = "python-dateutil-2.8.2.tar.gz", hash = "sha256:0123cacc1627ae19ddf3c27a5de5bd67ee4586fbdd6440d9748f8abb483d3e86"},
+    {file = "python_dateutil-2.8.2-py2.py3-none-any.whl", hash = "sha256:961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9"},
+]
+
+[package.dependencies]
+six = ">=1.5"
+
 [[package]]
 name = "python-engineio"
 version = "4.3.4"
@@ -759,6 +944,18 @@ python-engineio = ">=4.3.0"
 asyncio-client = ["aiohttp (>=3.4)"]
 client = ["requests (>=2.21.0)", "websocket-client (>=0.54.0)"]
 
+[[package]]
+name = "pytz"
+version = "2022.7.1"
+description = "World timezone definitions, modern and historical"
+category = "dev"
+optional = false
+python-versions = "*"
+files = [
+    {file = "pytz-2022.7.1-py2.py3-none-any.whl", hash = "sha256:78f4f37d8198e0627c5f1143240bb0206b8691d8d7ac6d78fee88b78733f8c4a"},
+    {file = "pytz-2022.7.1.tar.gz", hash = "sha256:01a0681c4b9684a28304615eba55d1ab31ae00bf68ec157ec3708a8182dbbcd0"},
+]
+
 [[package]]
 name = "redis"
 version = "4.5.1"
@@ -937,7 +1134,7 @@ files = [
 ]
 
 [package.dependencies]
-greenlet = {version = "!=0.4.17", markers = "python_version >= \"3\" and platform_machine == \"aarch64\" or python_version >= \"3\" and platform_machine == \"ppc64le\" or python_version >= \"3\" and platform_machine == \"x86_64\" or python_version >= \"3\" and platform_machine == \"amd64\" or python_version >= \"3\" and platform_machine == \"AMD64\" or python_version >= \"3\" and platform_machine == \"win32\" or python_version >= \"3\" and platform_machine == \"WIN32\""}
+greenlet = {version = "!=0.4.17", markers = "python_version >= \"3\" and (platform_machine == \"aarch64\" or platform_machine == \"ppc64le\" or platform_machine == \"x86_64\" or platform_machine == \"amd64\" or platform_machine == \"AMD64\" or platform_machine == \"win32\" or platform_machine == \"WIN32\")"}
 importlib-metadata = {version = "*", markers = "python_version < \"3.8\""}
 
 [package.extras]
@@ -1236,4 +1433,4 @@ testing = ["big-O", "flake8 (<5)", "jaraco.functools", "jaraco.itertools", "more
 [metadata]
 lock-version = "2.0"
 python-versions = "^3.7"
-content-hash = "b7272a6016a5b9fb3eea7ce834b9f539919e8f71c7f849d626adb2ee7a354d2f"
+content-hash = "5ca32932250a2a3f00c95b0bdd77d9702b82e951958ee5ca29180f11174ac8e4"

+ 22 - 4
pynecone/components/datadisplay/datatable.py

@@ -60,12 +60,26 @@ class DataTable(Gridjs):
         Raises:
             ValueError: If a pandas dataframe is passed in and columns are also provided.
         """
+        data = props.get("data")
+
         # If data is a pandas dataframe and columns are provided throw an error.
-        if utils.is_dataframe(type(props.get("data"))) and props.get("columns"):
+        if (
+            utils.is_dataframe(type(data))
+            or (isinstance(data, Var) and utils.is_dataframe(data.type_))
+        ) and props.get("columns"):
             raise ValueError(
                 "Cannot pass in both a pandas dataframe and columns to the data_table component."
             )
 
+        # If data is a list and columns are not provided, throw an error
+        if (
+            (isinstance(data, Var) and issubclass(data.type_, List))
+            or issubclass(type(data), List)
+        ) and not props.get("columns"):
+            raise ValueError(
+                "column field should be specified when the data field is a list type"
+            )
+
         # Create the component.
         return super().create(
             *children,
@@ -78,15 +92,19 @@ class DataTable(Gridjs):
         )
 
     def _render(self) -> Tag:
-        # If given a var dataframe, get the data and columns
+
         if isinstance(self.data, Var):
             self.columns = BaseVar(
-                name=f"{self.data.name}.columns",
+                name=f"{self.data.name}.columns"
+                if utils.is_dataframe(self.data.type_)
+                else f"{self.columns.name}",
                 type_=List[Any],
                 state=self.data.state,
             )
             self.data = BaseVar(
-                name=f"{self.data.name}.data",
+                name=f"{self.data.name}.data"
+                if utils.is_dataframe(self.data.type_)
+                else f"{self.data.name}",
                 type_=List[List[Any]],
                 state=self.data.state,
             )

+ 1 - 1
pynecone/components/tags/tag.py

@@ -127,7 +127,7 @@ class Tag(Base):
         # Format all the props.
         return os.linesep.join(
             f"{name}={self.format_prop(prop)}"
-            for name, prop in self.props.items()
+            for name, prop in sorted(self.props.items())
             if prop is not None
         )
 

+ 4 - 0
pyproject.toml

@@ -49,6 +49,10 @@ toml = "^0.10.2"
 pytest-asyncio = "^0.20.1"
 black = "^22.10.0"
 ruff = "^0.0.244"
+pandas = [
+    {version = "^1.5.3", python = ">=3.8,<4.0"},
+    {version = "^1.1", python = ">=3.7, <3.8"}
+]
 
 [tool.poetry.scripts]
 pc = "pynecone.pc:main"

+ 0 - 0
tests/components/datadisplay/__init__.py


+ 12 - 0
tests/components/datadisplay/conftest.py

@@ -0,0 +1,12 @@
+import pytest
+
+import pynecone as pc
+
+
+@pytest.fixture
+def data_table_state(request):
+    class DataTableState(pc.State):
+        data = request.param["data"]
+        columns = ["column1", "column2"]
+
+    return DataTableState

+ 64 - 0
tests/components/datadisplay/test_datatable.py

@@ -0,0 +1,64 @@
+import os
+
+import pandas as pd
+import pytest
+
+import pynecone as pc
+from pynecone import utils
+from pynecone.components import data_table
+
+
+@pytest.mark.parametrize(
+    "data_table_state,expected",
+    [
+        pytest.param(
+            {
+                "data": pd.DataFrame(
+                    [["foo", "bar"], ["foo1", "bar1"]], columns=["column1", "column2"]
+                )
+            },
+            "data_table_state.data",
+        ),
+        pytest.param({"data": ["foo", "bar"]}, "data_table_state"),
+        pytest.param({"data": [["foo", "bar"], ["foo1", "bar1"]]}, "data_table_state"),
+    ],
+    indirect=["data_table_state"],
+)
+def test_validate_data_table(data_table_state: pc.Var, expected):
+    """Test the str/render function.
+
+    Args:
+        data_table_state: The state fixture.
+        expected: expected var name.
+
+    """
+    props = {"data": data_table_state.data}
+    if not utils.is_dataframe(data_table_state.data.type_):
+        props["columns"] = data_table_state.columns
+    data_table_component = data_table(**props)
+
+    assert (
+        str(data_table_component)
+        == f"<DataTableGrid columns={{{expected}.columns}}{os.linesep}data={{"
+        f"{expected}.data}}/>"
+    )
+
+
+@pytest.mark.parametrize(
+    "props",
+    [
+        {"data": [["foo", "bar"], ["foo1", "bar1"]]},
+        {
+            "data": pd.DataFrame([["foo", "bar"], ["foo1", "bar1"]]),
+            "columns": ["column1", "column2"],
+        },
+    ],
+)
+def test_invalid_props(props):
+    """Test if value error is thrown when invalid props are passed.
+
+    Args:
+        props: props to pass in component.
+    """
+    with pytest.raises(ValueError):
+        data_table(**props)