import json import math import typing from typing import Dict, List, Optional, Set, Tuple, Union, cast import pytest from pandas import DataFrame from reflex.base import Base from reflex.constants.base import REFLEX_VAR_CLOSING_TAG, REFLEX_VAR_OPENING_TAG from reflex.state import BaseState from reflex.utils.imports import ImportVar from reflex.vars import VarData from reflex.vars.base import ( ComputedVar, LiteralVar, Var, computed_var, var_operation, var_operation_return, ) from reflex.vars.function import ArgsFunctionOperation, FunctionStringVar from reflex.vars.number import ( LiteralBooleanVar, LiteralNumberVar, NumberVar, ) from reflex.vars.object import LiteralObjectVar, ObjectVar from reflex.vars.sequence import ( ArrayVar, ConcatVarOperation, LiteralArrayVar, LiteralStringVar, ) test_vars = [ Var(_js_expr="prop1", _var_type=int), Var(_js_expr="key", _var_type=str), Var(_js_expr="value", _var_type=str)._var_set_state("state"), Var(_js_expr="local", _var_type=str)._var_set_state("state"), Var(_js_expr="local2", _var_type=str), ] class ATestState(BaseState): """Test state.""" value: str dict_val: Dict[str, List] = {} @pytest.fixture def TestObj(): class TestObj(Base): foo: int bar: str return TestObj @pytest.fixture def ParentState(TestObj): class ParentState(BaseState): foo: int bar: int @computed_var def var_without_annotation(self): return TestObj return ParentState @pytest.fixture def ChildState(ParentState, TestObj): class ChildState(ParentState): @computed_var def var_without_annotation(self): """This shadows ParentState.var_without_annotation. Returns: TestObj: Test object. """ return TestObj return ChildState @pytest.fixture def GrandChildState(ChildState, TestObj): class GrandChildState(ChildState): @computed_var def var_without_annotation(self): """This shadows ChildState.var_without_annotation. Returns: TestObj: Test object. """ return TestObj return GrandChildState @pytest.fixture def StateWithAnyVar(TestObj): class StateWithAnyVar(BaseState): @computed_var def var_without_annotation(self) -> typing.Any: return TestObj return StateWithAnyVar @pytest.fixture def StateWithCorrectVarAnnotation(): class StateWithCorrectVarAnnotation(BaseState): @computed_var def var_with_annotation(self) -> str: return "Correct annotation" return StateWithCorrectVarAnnotation @pytest.fixture def StateWithWrongVarAnnotation(TestObj): class StateWithWrongVarAnnotation(BaseState): @computed_var def var_with_annotation(self) -> str: return TestObj return StateWithWrongVarAnnotation @pytest.fixture def StateWithInitialComputedVar(): class StateWithInitialComputedVar(BaseState): @computed_var(initial_value="Initial value") def var_with_initial_value(self) -> str: return "Runtime value" return StateWithInitialComputedVar @pytest.fixture def ChildWithInitialComputedVar(StateWithInitialComputedVar): class ChildWithInitialComputedVar(StateWithInitialComputedVar): @computed_var(initial_value="Initial value") def var_with_initial_value_child(self) -> str: return "Runtime value" return ChildWithInitialComputedVar @pytest.fixture def StateWithRuntimeOnlyVar(): class StateWithRuntimeOnlyVar(BaseState): @computed_var(initial_value=None) def var_raises_at_runtime(self) -> str: raise ValueError("So nicht, mein Freund") return StateWithRuntimeOnlyVar @pytest.fixture def ChildWithRuntimeOnlyVar(StateWithRuntimeOnlyVar): class ChildWithRuntimeOnlyVar(StateWithRuntimeOnlyVar): @computed_var(initial_value="Initial value") def var_raises_at_runtime_child(self) -> str: raise ValueError("So nicht, mein Freund") return ChildWithRuntimeOnlyVar @pytest.mark.parametrize( "prop,expected", zip( test_vars, [ "prop1", "key", "state.value", "state.local", "local2", ], ), ) def test_full_name(prop, expected): """Test that the full name of a var is correct. Args: prop: The var to test. expected: The expected full name. """ assert str(prop) == expected @pytest.mark.parametrize( "prop,expected", zip( test_vars, ["prop1", "key", "state.value", "state.local", "local2"], ), ) def test_str(prop, expected): """Test that the string representation of a var is correct. Args: prop: The var to test. expected: The expected string representation. """ assert str(prop) == expected @pytest.mark.parametrize( "prop,expected", [ (Var(_js_expr="p", _var_type=int), 0), (Var(_js_expr="p", _var_type=float), 0.0), (Var(_js_expr="p", _var_type=str), ""), (Var(_js_expr="p", _var_type=bool), False), (Var(_js_expr="p", _var_type=list), []), (Var(_js_expr="p", _var_type=dict), {}), (Var(_js_expr="p", _var_type=tuple), ()), (Var(_js_expr="p", _var_type=set), set()), ], ) def test_default_value(prop, expected): """Test that the default value of a var is correct. Args: prop: The var to test. expected: The expected default value. """ assert prop.get_default_value() == expected @pytest.mark.parametrize( "prop,expected", zip( test_vars, [ "set_prop1", "set_key", "state.set_value", "state.set_local", "set_local2", ], ), ) def test_get_setter(prop, expected): """Test that the name of the setter function of a var is correct. Args: prop: The var to test. expected: The expected name of the setter function. """ assert prop.get_setter_name() == expected @pytest.mark.parametrize( "value,expected", [ (None, Var(_js_expr="null", _var_type=None)), (1, Var(_js_expr="1", _var_type=int)), ("key", Var(_js_expr='"key"', _var_type=str)), (3.14, Var(_js_expr="3.14", _var_type=float)), ([1, 2, 3], Var(_js_expr="[1, 2, 3]", _var_type=List[int])), ( {"a": 1, "b": 2}, Var(_js_expr='({ ["a"] : 1, ["b"] : 2 })', _var_type=Dict[str, int]), ), ], ) def test_create(value, expected): """Test the var create function. Args: value: The value to create a var from. expected: The expected name of the setter function. """ prop = LiteralVar.create(value) assert prop.equals(expected) # type: ignore def test_create_type_error(): """Test the var create function when inputs type error.""" class ErrorType: pass value = ErrorType() with pytest.raises(TypeError): LiteralVar.create(value) def v(value) -> Var: return LiteralVar.create(value) def test_basic_operations(TestObj): """Test the var operations. Args: TestObj: The test object. """ assert str(v(1) == v(2)) == "(1 === 2)" assert str(v(1) != v(2)) == "(1 !== 2)" assert str(LiteralNumberVar.create(1) < 2) == "(1 < 2)" assert str(LiteralNumberVar.create(1) <= 2) == "(1 <= 2)" assert str(LiteralNumberVar.create(1) > 2) == "(1 > 2)" assert str(LiteralNumberVar.create(1) >= 2) == "(1 >= 2)" assert str(LiteralNumberVar.create(1) + 2) == "(1 + 2)" assert str(LiteralNumberVar.create(1) - 2) == "(1 - 2)" assert str(LiteralNumberVar.create(1) * 2) == "(1 * 2)" assert str(LiteralNumberVar.create(1) / 2) == "(1 / 2)" assert str(LiteralNumberVar.create(1) // 2) == "Math.floor(1 / 2)" assert str(LiteralNumberVar.create(1) % 2) == "(1 % 2)" assert str(LiteralNumberVar.create(1) ** 2) == "(1 ** 2)" assert str(LiteralNumberVar.create(1) & v(2)) == "(1 && 2)" assert str(LiteralNumberVar.create(1) | v(2)) == "(1 || 2)" assert str(LiteralArrayVar.create([1, 2, 3])[0]) == "[1, 2, 3].at(0)" assert ( str(LiteralObjectVar.create({"a": 1, "b": 2})["a"]) == '({ ["a"] : 1, ["b"] : 2 })["a"]' ) assert str(v("foo") == v("bar")) == '("foo" === "bar")' assert str(Var(_js_expr="foo") == Var(_js_expr="bar")) == "(foo === bar)" assert ( str(LiteralVar.create("foo") == LiteralVar.create("bar")) == '("foo" === "bar")' ) print(Var(_js_expr="foo").to(ObjectVar, TestObj)._var_set_state("state")) assert ( str( Var(_js_expr="foo").to(ObjectVar, TestObj)._var_set_state("state").bar == LiteralVar.create("bar") ) == '(state.foo["bar"] === "bar")' ) assert ( str(Var(_js_expr="foo").to(ObjectVar, TestObj)._var_set_state("state").bar) == 'state.foo["bar"]' ) assert str(abs(LiteralNumberVar.create(1))) == "Math.abs(1)" assert str(LiteralArrayVar.create([1, 2, 3]).length()) == "[1, 2, 3].length" assert ( str(LiteralArrayVar.create([1, 2]) + LiteralArrayVar.create([3, 4])) == "[...[1, 2], ...[3, 4]]" ) # Tests for reverse operation assert ( str(LiteralArrayVar.create([1, 2, 3]).reverse()) == "[1, 2, 3].slice().reverse()" ) assert ( str(LiteralArrayVar.create(["1", "2", "3"]).reverse()) == '["1", "2", "3"].slice().reverse()' ) assert ( str(Var(_js_expr="foo")._var_set_state("state").to(list).reverse()) == "state.foo.slice().reverse()" ) assert str(Var(_js_expr="foo").to(list).reverse()) == "foo.slice().reverse()" assert str(Var(_js_expr="foo", _var_type=str).js_type()) == "(typeof(foo))" @pytest.mark.parametrize( "var, expected", [ (v([1, 2, 3]), "[1, 2, 3]"), (v(set([1, 2, 3])), "[1, 2, 3]"), (v(["1", "2", "3"]), '["1", "2", "3"]'), ( Var(_js_expr="foo")._var_set_state("state").to(list), "state.foo", ), (Var(_js_expr="foo").to(list), "foo"), (v((1, 2, 3)), "[1, 2, 3]"), (v(("1", "2", "3")), '["1", "2", "3"]'), ( Var(_js_expr="foo")._var_set_state("state").to(tuple), "state.foo", ), (Var(_js_expr="foo").to(tuple), "foo"), ], ) def test_list_tuple_contains(var, expected): assert str(var.contains(1)) == f"{expected}.includes(1)" assert str(var.contains("1")) == f'{expected}.includes("1")' assert str(var.contains(v(1))) == f"{expected}.includes(1)" assert str(var.contains(v("1"))) == f'{expected}.includes("1")' other_state_var = Var(_js_expr="other", _var_type=str)._var_set_state("state") other_var = Var(_js_expr="other", _var_type=str) assert str(var.contains(other_state_var)) == f"{expected}.includes(state.other)" assert str(var.contains(other_var)) == f"{expected}.includes(other)" @pytest.mark.parametrize( "var, expected", [ (v("123"), json.dumps("123")), (Var(_js_expr="foo")._var_set_state("state").to(str), "state.foo"), (Var(_js_expr="foo").to(str), "foo"), ], ) def test_str_contains(var, expected): assert str(var.contains("1")) == f'{expected}.includes("1")' assert str(var.contains(v("1"))) == f'{expected}.includes("1")' other_state_var = Var(_js_expr="other")._var_set_state("state").to(str) other_var = Var(_js_expr="other").to(str) assert str(var.contains(other_state_var)) == f"{expected}.includes(state.other)" assert str(var.contains(other_var)) == f"{expected}.includes(other)" assert ( str(var.contains("1", "hello")) == f'{expected}.some(obj => obj["hello"] === "1")' ) @pytest.mark.parametrize( "var, expected", [ (v({"a": 1, "b": 2}), '({ ["a"] : 1, ["b"] : 2 })'), (Var(_js_expr="foo")._var_set_state("state").to(dict), "state.foo"), (Var(_js_expr="foo").to(dict), "foo"), ], ) def test_dict_contains(var, expected): assert str(var.contains(1)) == f"{expected}.hasOwnProperty(1)" assert str(var.contains("1")) == f'{expected}.hasOwnProperty("1")' assert str(var.contains(v(1))) == f"{expected}.hasOwnProperty(1)" assert str(var.contains(v("1"))) == f'{expected}.hasOwnProperty("1")' other_state_var = Var(_js_expr="other")._var_set_state("state").to(str) other_var = Var(_js_expr="other").to(str) assert ( str(var.contains(other_state_var)) == f"{expected}.hasOwnProperty(state.other)" ) assert str(var.contains(other_var)) == f"{expected}.hasOwnProperty(other)" @pytest.mark.parametrize( "var", [ Var(_js_expr="list", _var_type=List[int]).guess_type(), Var(_js_expr="tuple", _var_type=Tuple[int, int]).guess_type(), Var(_js_expr="str", _var_type=str).guess_type(), ], ) def test_var_indexing_lists(var): """Test that we can index into str, list or tuple vars. Args: var : The str, list or tuple base var. """ # Test basic indexing. assert str(var[0]) == f"{var._js_expr}.at(0)" assert str(var[1]) == f"{var._js_expr}.at(1)" # Test negative indexing. assert str(var[-1]) == f"{var._js_expr}.at(-1)" @pytest.mark.parametrize( "var, type_", [ (Var(_js_expr="list", _var_type=List[int]).guess_type(), [int, int]), ( Var(_js_expr="tuple", _var_type=Tuple[int, str]).guess_type(), [int, str], ), ], ) def test_var_indexing_types(var, type_): """Test that indexing returns valid types. Args: var : The list, typle base var. type_ : The type on indexed object. """ assert var[2]._var_type == type_[0] assert var[3]._var_type == type_[1] def test_var_indexing_str(): """Test that we can index into str vars.""" str_var = Var(_js_expr="str").to(str) # Test that indexing gives a type of Var[str]. assert isinstance(str_var[0], Var) assert str_var[0]._var_type == str # Test basic indexing. assert str(str_var[0]) == "str.at(0)" assert str(str_var[1]) == "str.at(1)" # Test negative indexing. assert str(str_var[-1]) == "str.at(-1)" @pytest.mark.parametrize( "var", [ (Var(_js_expr="foo", _var_type=int).guess_type()), (Var(_js_expr="bar", _var_type=float).guess_type()), ], ) def test_var_replace_with_invalid_kwargs(var): with pytest.raises(TypeError) as excinfo: var._replace(_this_should_fail=True) assert "unexpected keyword argument" in str(excinfo.value) def test_computed_var_replace_with_invalid_kwargs(): @computed_var(initial_value=1) def test_var(state) -> int: return 1 with pytest.raises(TypeError) as excinfo: test_var._replace(_random_kwarg=True) assert "Unexpected keyword argument" in str(excinfo.value) @pytest.mark.parametrize( "var, index", [ (Var(_js_expr="lst", _var_type=List[int]).guess_type(), [1, 2]), ( Var(_js_expr="lst", _var_type=List[int]).guess_type(), {"name": "dict"}, ), (Var(_js_expr="lst", _var_type=List[int]).guess_type(), {"set"}), ( Var(_js_expr="lst", _var_type=List[int]).guess_type(), ( 1, 2, ), ), (Var(_js_expr="lst", _var_type=List[int]).guess_type(), 1.5), (Var(_js_expr="lst", _var_type=List[int]).guess_type(), "str"), ( Var(_js_expr="lst", _var_type=List[int]).guess_type(), Var(_js_expr="string_var", _var_type=str).guess_type(), ), ( Var(_js_expr="lst", _var_type=List[int]).guess_type(), Var(_js_expr="float_var", _var_type=float).guess_type(), ), ( Var(_js_expr="lst", _var_type=List[int]).guess_type(), Var(_js_expr="list_var", _var_type=List[int]).guess_type(), ), ( Var(_js_expr="lst", _var_type=List[int]).guess_type(), Var(_js_expr="set_var", _var_type=Set[str]).guess_type(), ), ( Var(_js_expr="lst", _var_type=List[int]).guess_type(), Var(_js_expr="dict_var", _var_type=Dict[str, str]).guess_type(), ), (Var(_js_expr="str", _var_type=str).guess_type(), [1, 2]), (Var(_js_expr="lst", _var_type=str).guess_type(), {"name": "dict"}), (Var(_js_expr="lst", _var_type=str).guess_type(), {"set"}), ( Var(_js_expr="lst", _var_type=str).guess_type(), Var(_js_expr="string_var", _var_type=str).guess_type(), ), ( Var(_js_expr="lst", _var_type=str).guess_type(), Var(_js_expr="float_var", _var_type=float).guess_type(), ), (Var(_js_expr="str", _var_type=Tuple[str]).guess_type(), [1, 2]), ( Var(_js_expr="lst", _var_type=Tuple[str]).guess_type(), {"name": "dict"}, ), (Var(_js_expr="lst", _var_type=Tuple[str]).guess_type(), {"set"}), ( Var(_js_expr="lst", _var_type=Tuple[str]).guess_type(), Var(_js_expr="string_var", _var_type=str).guess_type(), ), ( Var(_js_expr="lst", _var_type=Tuple[str]).guess_type(), Var(_js_expr="float_var", _var_type=float).guess_type(), ), ], ) def test_var_unsupported_indexing_lists(var, index): """Test unsupported indexing throws a type error. Args: var: The base var. index: The base var index. """ with pytest.raises(TypeError): var[index] @pytest.mark.parametrize( "var", [ Var(_js_expr="lst", _var_type=List[int]).guess_type(), Var(_js_expr="tuple", _var_type=Tuple[int, int]).guess_type(), ], ) def test_var_list_slicing(var): """Test that we can slice into str, list or tuple vars. Args: var : The str, list or tuple base var. """ assert str(var[:1]) == f"{var._js_expr}.slice(undefined, 1)" assert str(var[1:]) == f"{var._js_expr}.slice(1, undefined)" assert str(var[:]) == f"{var._js_expr}.slice(undefined, undefined)" def test_str_var_slicing(): """Test that we can slice into str vars.""" str_var = Var(_js_expr="str").to(str) # Test that slicing gives a type of Var[str]. assert isinstance(str_var[:1], Var) assert str_var[:1]._var_type == str # Test basic slicing. assert str(str_var[:1]) == 'str.split("").slice(undefined, 1).join("")' assert str(str_var[1:]) == 'str.split("").slice(1, undefined).join("")' assert str(str_var[:]) == 'str.split("").slice(undefined, undefined).join("")' assert str(str_var[1:2]) == 'str.split("").slice(1, 2).join("")' # Test negative slicing. assert str(str_var[:-1]) == 'str.split("").slice(undefined, -1).join("")' assert str(str_var[-1:]) == 'str.split("").slice(-1, undefined).join("")' assert str(str_var[:-2]) == 'str.split("").slice(undefined, -2).join("")' assert str(str_var[-2:]) == 'str.split("").slice(-2, undefined).join("")' def test_dict_indexing(): """Test that we can index into dict vars.""" dct = Var(_js_expr="dct").to(ObjectVar, Dict[str, str]) # Check correct indexing. assert str(dct["a"]) == 'dct["a"]' assert str(dct["asdf"]) == 'dct["asdf"]' @pytest.mark.parametrize( "var, index", [ ( Var(_js_expr="dict", _var_type=Dict[str, str]).guess_type(), [1, 2], ), ( Var(_js_expr="dict", _var_type=Dict[str, str]).guess_type(), {"name": "dict"}, ), ( Var(_js_expr="dict", _var_type=Dict[str, str]).guess_type(), {"set"}, ), ( Var(_js_expr="dict", _var_type=Dict[str, str]).guess_type(), ( 1, 2, ), ), ( Var(_js_expr="lst", _var_type=Dict[str, str]).guess_type(), Var(_js_expr="list_var", _var_type=List[int]).guess_type(), ), ( Var(_js_expr="lst", _var_type=Dict[str, str]).guess_type(), Var(_js_expr="set_var", _var_type=Set[str]).guess_type(), ), ( Var(_js_expr="lst", _var_type=Dict[str, str]).guess_type(), Var(_js_expr="dict_var", _var_type=Dict[str, str]).guess_type(), ), ( Var(_js_expr="df", _var_type=DataFrame).guess_type(), [1, 2], ), ( Var(_js_expr="df", _var_type=DataFrame).guess_type(), {"name": "dict"}, ), ( Var(_js_expr="df", _var_type=DataFrame).guess_type(), {"set"}, ), ( Var(_js_expr="df", _var_type=DataFrame).guess_type(), ( 1, 2, ), ), ( Var(_js_expr="df", _var_type=DataFrame).guess_type(), Var(_js_expr="list_var", _var_type=List[int]).guess_type(), ), ( Var(_js_expr="df", _var_type=DataFrame).guess_type(), Var(_js_expr="set_var", _var_type=Set[str]).guess_type(), ), ( Var(_js_expr="df", _var_type=DataFrame).guess_type(), Var(_js_expr="dict_var", _var_type=Dict[str, str]).guess_type(), ), ], ) def test_var_unsupported_indexing_dicts(var, index): """Test unsupported indexing throws a type error. Args: var: The base var. index: The base var index. """ with pytest.raises(TypeError): var[index] @pytest.mark.parametrize( "fixture", [ "ParentState", "StateWithAnyVar", ], ) def test_computed_var_without_annotation_error(request, fixture): """Test that a type error is thrown when an attribute of a computed var is accessed without annotating the computed var. Args: request: Fixture Request. fixture: The state fixture. """ with pytest.raises(TypeError) as err: state = request.getfixturevalue(fixture) state.var_without_annotation.foo full_name = state.var_without_annotation._var_full_name assert ( err.value.args[0] == f"You must provide an annotation for the state var `{full_name}`. Annotation cannot be `typing.Any`" ) @pytest.mark.parametrize( "fixture", [ "ChildState", "GrandChildState", ], ) def test_shadow_computed_var_error(request: pytest.FixtureRequest, fixture: str): """Test that a name error is thrown when an attribute of a computed var is shadowed by another attribute. Args: request: Fixture Request. fixture: The state fixture. """ with pytest.raises(NameError): state = request.getfixturevalue(fixture) state.var_without_annotation.foo @pytest.mark.parametrize( "fixture", [ "StateWithCorrectVarAnnotation", "StateWithWrongVarAnnotation", ], ) def test_computed_var_with_annotation_error(request, fixture): """Test that an Attribute error is thrown when a non-existent attribute of an annotated computed var is accessed or when the wrong annotation is provided to a computed var. Args: request: Fixture Request. fixture: The state fixture. """ with pytest.raises(AttributeError) as err: state = request.getfixturevalue(fixture) state.var_with_annotation.foo full_name = state.var_with_annotation._var_full_name assert ( err.value.args[0] == f"The State var `{full_name}` has no attribute 'foo' or may have been annotated wrongly." ) @pytest.mark.parametrize( "fixture,var_name,expected_initial,expected_runtime,raises_at_runtime", [ ( "StateWithInitialComputedVar", "var_with_initial_value", "Initial value", "Runtime value", False, ), ( "ChildWithInitialComputedVar", "var_with_initial_value_child", "Initial value", "Runtime value", False, ), ( "StateWithRuntimeOnlyVar", "var_raises_at_runtime", None, None, True, ), ( "ChildWithRuntimeOnlyVar", "var_raises_at_runtime_child", "Initial value", None, True, ), ], ) def test_state_with_initial_computed_var( request, fixture, var_name, expected_initial, expected_runtime, raises_at_runtime ): """Test that the initial and runtime values of a computed var are correct. Args: request: Fixture Request. fixture: The state fixture. var_name: The name of the computed var. expected_initial: The expected initial value of the computed var. expected_runtime: The expected runtime value of the computed var. raises_at_runtime: Whether the computed var is runtime only. """ state = request.getfixturevalue(fixture)() state_name = state.get_full_name() initial_dict = state.dict(initial=True)[state_name] assert initial_dict[var_name] == expected_initial if raises_at_runtime: with pytest.raises(ValueError): state.dict()[state_name][var_name] else: runtime_dict = state.dict()[state_name] assert runtime_dict[var_name] == expected_runtime def test_literal_var(): complicated_var = LiteralVar.create( [ {"a": 1, "b": 2, "c": {"d": 3, "e": 4}}, [1, 2, 3, 4], 9, "string", True, False, None, set([1, 2, 3]), ] ) assert ( str(complicated_var) == '[({ ["a"] : 1, ["b"] : 2, ["c"] : ({ ["d"] : 3, ["e"] : 4 }) }), [1, 2, 3, 4], 9, "string", true, false, null, [1, 2, 3]]' ) def test_function_var(): addition_func = FunctionStringVar.create("((a, b) => a + b)") assert str(addition_func.call(1, 2)) == "(((a, b) => a + b)(1, 2))" manual_addition_func = ArgsFunctionOperation.create( ("a", "b"), { "args": [Var(_js_expr="a"), Var(_js_expr="b")], "result": Var(_js_expr="a + b"), }, ) assert ( str(manual_addition_func.call(1, 2)) == '(((a, b) => (({ ["args"] : [a, b], ["result"] : a + b })))(1, 2))' ) increment_func = addition_func(1) assert ( str(increment_func.call(2)) == "(((...args) => ((((a, b) => a + b)(1, ...args))))(2))" ) create_hello_statement = ArgsFunctionOperation.create( ("name",), f"Hello, {Var(_js_expr='name')}!" ) first_name = LiteralStringVar.create("Steven") last_name = LiteralStringVar.create("Universe") assert ( str(create_hello_statement.call(f"{first_name} {last_name}")) == '(((name) => (("Hello, "+name+"!")))("Steven Universe"))' ) def test_var_operation(): @var_operation def add(a: Union[NumberVar, int], b: Union[NumberVar, int]): return var_operation_return(js_expression=f"({a} + {b})", var_type=int) assert str(add(1, 2)) == "(1 + 2)" assert str(add(a=4, b=-9)) == "(4 + -9)" five = LiteralNumberVar.create(5) seven = add(2, five) assert isinstance(seven, NumberVar) def test_string_operations(): basic_string = LiteralStringVar.create("Hello, World!") assert str(basic_string.length()) == '"Hello, World!".split("").length' assert str(basic_string.lower()) == '"Hello, World!".toLowerCase()' assert str(basic_string.upper()) == '"Hello, World!".toUpperCase()' assert str(basic_string.strip()) == '"Hello, World!".trim()' assert str(basic_string.contains("World")) == '"Hello, World!".includes("World")' assert ( str(basic_string.split(" ").join(",")) == '"Hello, World!".split(" ").join(",")' ) def test_all_number_operations(): starting_number = LiteralNumberVar.create(-5.4) complicated_number = (((-(starting_number + 1)) * 2 / 3) // 2 % 3) ** 2 assert ( str(complicated_number) == "((Math.floor(((-((-5.4 + 1)) * 2) / 3) / 2) % 3) ** 2)" ) even_more_complicated_number = ~( abs(math.floor(complicated_number)) | 2 & 3 & round(complicated_number) ) assert ( str(even_more_complicated_number) == "!(((Math.abs(Math.floor(((Math.floor(((-((-5.4 + 1)) * 2) / 3) / 2) % 3) ** 2))) || (2 && Math.round(((Math.floor(((-((-5.4 + 1)) * 2) / 3) / 2) % 3) ** 2)))) !== 0))" ) assert str(LiteralNumberVar.create(5) > False) == "(5 > 0)" assert str(LiteralBooleanVar.create(False) < 5) == "(Number(false) < 5)" assert ( str(LiteralBooleanVar.create(False) < LiteralBooleanVar.create(True)) == "(Number(false) < Number(true))" ) def test_index_operation(): array_var = LiteralArrayVar.create([1, 2, 3, 4, 5]) assert str(array_var[0]) == "[1, 2, 3, 4, 5].at(0)" assert str(array_var[1:2]) == "[1, 2, 3, 4, 5].slice(1, 2)" assert ( str(array_var[1:4:2]) == "[1, 2, 3, 4, 5].slice(1, 4).filter((_, i) => i % 2 === 0)" ) assert ( str(array_var[::-1]) == "[1, 2, 3, 4, 5].slice(0, [1, 2, 3, 4, 5].length).slice().reverse().slice(undefined, undefined).filter((_, i) => i % 1 === 0)" ) assert str(array_var.reverse()) == "[1, 2, 3, 4, 5].slice().reverse()" assert str(array_var[0].to(NumberVar) + 9) == "([1, 2, 3, 4, 5].at(0) + 9)" def test_array_operations(): array_var = LiteralArrayVar.create([1, 2, 3, 4, 5]) assert str(array_var.length()) == "[1, 2, 3, 4, 5].length" assert str(array_var.contains(3)) == "[1, 2, 3, 4, 5].includes(3)" assert str(array_var.reverse()) == "[1, 2, 3, 4, 5].slice().reverse()" assert ( str(ArrayVar.range(10)) == "Array.from({ length: (10 - 0) / 1 }, (_, i) => 0 + i * 1)" ) assert ( str(ArrayVar.range(1, 10)) == "Array.from({ length: (10 - 1) / 1 }, (_, i) => 1 + i * 1)" ) assert ( str(ArrayVar.range(1, 10, 2)) == "Array.from({ length: (10 - 1) / 2 }, (_, i) => 1 + i * 2)" ) assert ( str(ArrayVar.range(1, 10, -1)) == "Array.from({ length: (10 - 1) / -1 }, (_, i) => 1 + i * -1)" ) def test_object_operations(): object_var = LiteralObjectVar.create({"a": 1, "b": 2, "c": 3}) assert ( str(object_var.keys()) == 'Object.keys(({ ["a"] : 1, ["b"] : 2, ["c"] : 3 }))' ) assert ( str(object_var.values()) == 'Object.values(({ ["a"] : 1, ["b"] : 2, ["c"] : 3 }))' ) assert ( str(object_var.entries()) == 'Object.entries(({ ["a"] : 1, ["b"] : 2, ["c"] : 3 }))' ) assert str(object_var.a) == '({ ["a"] : 1, ["b"] : 2, ["c"] : 3 })["a"]' assert str(object_var["a"]) == '({ ["a"] : 1, ["b"] : 2, ["c"] : 3 })["a"]' assert ( str(object_var.merge(LiteralObjectVar.create({"c": 4, "d": 5}))) == '({...({ ["a"] : 1, ["b"] : 2, ["c"] : 3 }), ...({ ["c"] : 4, ["d"] : 5 })})' ) def test_type_chains(): object_var = LiteralObjectVar.create({"a": 1, "b": 2, "c": 3}) assert (object_var._key_type(), object_var._value_type()) == (str, int) assert (object_var.keys()._var_type, object_var.values()._var_type) == ( List[str], List[int], ) assert ( str(object_var.keys()[0].upper()) # type: ignore == 'Object.keys(({ ["a"] : 1, ["b"] : 2, ["c"] : 3 })).at(0).toUpperCase()' ) assert ( str(object_var.entries()[1][1] - 1) # type: ignore == '(Object.entries(({ ["a"] : 1, ["b"] : 2, ["c"] : 3 })).at(1).at(1) - 1)' ) assert ( str(object_var["c"] + object_var["b"]) # type: ignore == '(({ ["a"] : 1, ["b"] : 2, ["c"] : 3 })["c"] + ({ ["a"] : 1, ["b"] : 2, ["c"] : 3 })["b"])' ) def test_nested_dict(): arr = LiteralArrayVar.create([{"bar": ["foo", "bar"]}], List[Dict[str, List[str]]]) assert ( str(arr[0]["bar"][0]) == '[({ ["bar"] : ["foo", "bar"] })].at(0)["bar"].at(0)' ) def nested_base(): class Boo(Base): foo: str bar: int class Foo(Base): bar: Boo baz: int parent_obj = LiteralObjectVar.create( Foo(bar=Boo(foo="bar", bar=5), baz=5).dict(), Foo ) assert ( str(parent_obj.bar.foo) == '({ ["bar"] : ({ ["foo"] : "bar", ["bar"] : 5 }), ["baz"] : 5 })["bar"]["foo"]' ) def test_retrival(): var_without_data = Var(_js_expr="test") assert var_without_data is not None original_var_data = VarData( state="Test", imports={"react": [ImportVar(tag="useRef")]}, hooks={"const state = useContext(StateContexts.state)": None}, ) var_with_data = var_without_data._replace(merge_var_data=original_var_data) f_string = f"foo{var_with_data}bar" assert REFLEX_VAR_OPENING_TAG in f_string assert REFLEX_VAR_CLOSING_TAG in f_string result_var_data = LiteralVar.create(f_string)._get_all_var_data() result_immutable_var_data = Var(_js_expr=f_string)._var_data assert result_var_data is not None and result_immutable_var_data is not None assert ( result_var_data.state == result_immutable_var_data.state == original_var_data.state ) assert ( result_var_data.imports == result_immutable_var_data.imports == original_var_data.imports ) assert ( tuple(result_var_data.hooks) == tuple(result_immutable_var_data.hooks) == tuple(original_var_data.hooks) ) def test_fstring_concat(): original_var_with_data = LiteralVar.create( "imagination", _var_data=VarData(state="fear") ) immutable_var_with_data = Var( _js_expr="consequences", _var_data=VarData( imports={ "react": [ImportVar(tag="useRef")], "utils": [ImportVar(tag="useEffect")], } ), ) f_string = f"foo{original_var_with_data}bar{immutable_var_with_data}baz" string_concat = LiteralStringVar.create( f_string, _var_data=VarData( hooks={"const state = useContext(StateContexts.state)": None} ), ) assert str(string_concat) == '("fooimaginationbar"+consequences+"baz")' assert isinstance(string_concat, ConcatVarOperation) assert string_concat._get_all_var_data() == VarData( state="fear", imports={ "react": [ImportVar(tag="useRef")], "utils": [ImportVar(tag="useEffect")], }, hooks={"const state = useContext(StateContexts.state)": None}, ) var = Var(_js_expr="var", _var_type=str) myvar = Var(_js_expr="myvar", _var_type=int)._var_set_state("state") x = Var(_js_expr="x", _var_type=str) @pytest.mark.parametrize( "out, expected", [ (f"{var}", f"{hash(var)}var"), ( f"testing f-string with {myvar}", f"testing f-string with {hash(myvar)}state.myvar", ), ( f"testing local f-string {x}", f"testing local f-string {hash(x)}x", ), ], ) def test_fstrings(out, expected): assert out == expected @pytest.mark.parametrize( ("value", "expect_state"), [ ([1], ""), ({"a": 1}, ""), ([LiteralVar.create(1)._var_set_state("foo")], "foo"), ({"a": LiteralVar.create(1)._var_set_state("foo")}, "foo"), ], ) def test_extract_state_from_container(value, expect_state): """Test that _var_state is extracted from containers containing BaseVar. Args: value: The value to create a var from. expect_state: The expected state. """ var_data = LiteralVar.create(value)._get_all_var_data() var_state = var_data.state if var_data else "" assert var_state == expect_state @pytest.mark.parametrize( "value", [ "var", "\nvar", ], ) def test_fstring_roundtrip(value): """Test that f-string roundtrip carries state. Args: value: The value to create a Var from. """ var = Var(_js_expr=value)._var_set_state("state") rt_var = LiteralVar.create(f"{var}") assert var._var_state == rt_var._var_state assert str(rt_var) == str(var) @pytest.mark.parametrize( "var", [ Var(_js_expr="var", _var_type=int).guess_type(), Var(_js_expr="var", _var_type=float).guess_type(), Var(_js_expr="var", _var_type=str).guess_type(), Var(_js_expr="var", _var_type=bool).guess_type(), Var(_js_expr="var", _var_type=dict).guess_type(), Var(_js_expr="var", _var_type=None).guess_type(), ], ) def test_unsupported_types_for_reverse(var): """Test that unsupported types for reverse throw a type error. Args: var: The base var. """ with pytest.raises(TypeError) as err: var.reverse() assert err.value.args[0] == f"Cannot reverse non-list var." @pytest.mark.parametrize( "var", [ Var(_js_expr="var", _var_type=int).guess_type(), Var(_js_expr="var", _var_type=float).guess_type(), Var(_js_expr="var", _var_type=bool).guess_type(), Var(_js_expr="var", _var_type=None).guess_type(), ], ) def test_unsupported_types_for_contains(var): """Test that unsupported types for contains throw a type error. Args: var: The base var. """ with pytest.raises(TypeError) as err: assert var.contains(1) assert ( err.value.args[0] == f"Var of type {var._var_type} does not support contains check." ) @pytest.mark.parametrize( "other", [ Var(_js_expr="other", _var_type=int).guess_type(), Var(_js_expr="other", _var_type=float).guess_type(), Var(_js_expr="other", _var_type=bool).guess_type(), Var(_js_expr="other", _var_type=list).guess_type(), Var(_js_expr="other", _var_type=dict).guess_type(), Var(_js_expr="other", _var_type=tuple).guess_type(), Var(_js_expr="other", _var_type=set).guess_type(), ], ) def test_unsupported_types_for_string_contains(other): with pytest.raises(TypeError) as err: assert Var(_js_expr="var").to(str).contains(other) assert ( err.value.args[0] == f"Unsupported Operand type(s) for contains: ToStringOperation, {type(other).__name__}" ) def test_unsupported_default_contains(): with pytest.raises(TypeError) as err: assert 1 in Var(_js_expr="var", _var_type=str).guess_type() assert ( err.value.args[0] == "'in' operator not supported for Var types, use Var.contains() instead." ) @pytest.mark.parametrize( "operand1_var,operand2_var,operators", [ ( LiteralVar.create(10), LiteralVar.create(5), [ "+", "-", "/", "//", "*", "%", "**", ">", "<", "<=", ">=", "|", "&", ], ), ( LiteralVar.create(10.5), LiteralVar.create(5), ["+", "-", "/", "//", "*", "%", "**", ">", "<", "<=", ">="], ), ( LiteralVar.create(5), LiteralVar.create(True), [ "+", "-", "/", "//", "*", "%", "**", ">", "<", "<=", ">=", "|", "&", ], ), ( LiteralVar.create(10.5), LiteralVar.create(5.5), ["+", "-", "/", "//", "*", "%", "**", ">", "<", "<=", ">="], ), ( LiteralVar.create(10.5), LiteralVar.create(True), ["+", "-", "/", "//", "*", "%", "**", ">", "<", "<=", ">="], ), (LiteralVar.create("10"), LiteralVar.create("5"), ["+", ">", "<", "<=", ">="]), ( LiteralVar.create([10, 20]), LiteralVar.create([5, 6]), ["+", ">", "<", "<=", ">="], ), (LiteralVar.create([10, 20]), LiteralVar.create(5), ["*"]), (LiteralVar.create([10, 20]), LiteralVar.create(True), ["*"]), ( LiteralVar.create(True), LiteralVar.create(True), [ "+", "-", "/", "//", "*", "%", "**", ">", "<", "<=", ">=", "|", "&", ], ), ], ) def test_valid_var_operations(operand1_var: Var, operand2_var, operators: List[str]): """Test that operations do not raise a TypeError. Args: operand1_var: left operand. operand2_var: right operand. operators: list of supported operators. """ for operator in operators: print( "testing", operator, "on", operand1_var, operand2_var, " of types", type(operand1_var), type(operand2_var), ) eval(f"operand1_var {operator} operand2_var") eval(f"operand2_var {operator} operand1_var") # operand1_var.operation(op=operator, other=operand2_var) # operand1_var.operation(op=operator, other=operand2_var, flip=True) @pytest.mark.parametrize( "operand1_var,operand2_var,operators", [ ( LiteralVar.create(10), LiteralVar.create(5), [ "^", "<<", ">>", ], ), ( LiteralVar.create(10.5), LiteralVar.create(5), [ "^", "<<", ">>", ], ), ( LiteralVar.create(10.5), LiteralVar.create(True), [ "^", "<<", ">>", ], ), ( LiteralVar.create(10.5), LiteralVar.create(5.5), [ "^", "<<", ">>", ], ), ( LiteralVar.create("10"), LiteralVar.create("5"), [ "-", "/", "//", "*", "%", "**", "^", "<<", ">>", ], ), ( LiteralVar.create([10, 20]), LiteralVar.create([5, 6]), [ "-", "/", "//", "*", "%", "**", "^", "<<", ">>", ], ), ( LiteralVar.create([10, 20]), LiteralVar.create(5), [ "+", "-", "/", "//", "%", "**", ">", "<", "<=", ">=", "^", "<<", ">>", ], ), ( LiteralVar.create([10, 20]), LiteralVar.create(True), [ "+", "-", "/", "//", "%", "**", ">", "<", "<=", ">=", "^", "<<", ">>", ], ), ( LiteralVar.create([10, 20]), LiteralVar.create("5"), [ "+", "-", "/", "//", "*", "%", "**", ">", "<", "<=", ">=", "^", "<<", ">>", ], ), ( LiteralVar.create([10, 20]), LiteralVar.create({"key": "value"}), [ "+", "-", "/", "//", "*", "%", "**", ">", "<", "<=", ">=", "^", "<<", ">>", ], ), ( LiteralVar.create([10, 20]), LiteralVar.create(5.5), [ "+", "-", "/", "//", "*", "%", "**", ">", "<", "<=", ">=", "^", "<<", ">>", ], ), ( LiteralVar.create({"key": "value"}), LiteralVar.create({"another_key": "another_value"}), [ "+", "-", "/", "//", "*", "%", "**", ">", "<", "<=", ">=", "^", "<<", ">>", ], ), ( LiteralVar.create({"key": "value"}), LiteralVar.create(5), [ "+", "-", "/", "//", "*", "%", "**", ">", "<", "<=", ">=", "^", "<<", ">>", ], ), ( LiteralVar.create({"key": "value"}), LiteralVar.create(True), [ "+", "-", "/", "//", "*", "%", "**", ">", "<", "<=", ">=", "^", "<<", ">>", ], ), ( LiteralVar.create({"key": "value"}), LiteralVar.create(5.5), [ "+", "-", "/", "//", "*", "%", "**", ">", "<", "<=", ">=", "^", "<<", ">>", ], ), ( LiteralVar.create({"key": "value"}), LiteralVar.create("5"), [ "+", "-", "/", "//", "*", "%", "**", ">", "<", "<=", ">=", "^", "<<", ">>", ], ), ], ) def test_invalid_var_operations(operand1_var: Var, operand2_var, operators: List[str]): for operator in operators: print(f"testing {operator} on {str(operand1_var)} and {str(operand2_var)}") with pytest.raises(TypeError): print(eval(f"operand1_var {operator} operand2_var")) # operand1_var.operation(op=operator, other=operand2_var) with pytest.raises(TypeError): print(eval(f"operand2_var {operator} operand1_var")) # operand1_var.operation(op=operator, other=operand2_var, flip=True) @pytest.mark.parametrize( "var, expected", [ (LiteralVar.create("string_value"), '"string_value"'), (LiteralVar.create(1), "1"), (LiteralVar.create([1, 2, 3]), "[1, 2, 3]"), (LiteralVar.create({"foo": "bar"}), '({ ["foo"] : "bar" })'), ( LiteralVar.create(ATestState.value), f"{ATestState.get_full_name()}.value", ), ( LiteralVar.create(f"{ATestState.value} string"), f'({ATestState.get_full_name()}.value+" string")', ), ( LiteralVar.create(ATestState.dict_val), f"{ATestState.get_full_name()}.dict_val", ), ], ) def test_var_name_unwrapped(var, expected): assert str(var) == expected def cv_fget(state: BaseState) -> int: return 1 @pytest.mark.parametrize( "deps,expected", [ (["a"], {"a"}), (["b"], {"b"}), ([ComputedVar(fget=cv_fget)], {"cv_fget"}), ], ) def test_computed_var_deps(deps: List[Union[str, Var]], expected: Set[str]): @computed_var( deps=deps, cache=True, ) def test_var(state) -> int: return 1 assert test_var._static_deps == expected @pytest.mark.parametrize( "deps", [ [""], [1], ["", "abc"], ], ) def test_invalid_computed_var_deps(deps: List): with pytest.raises(TypeError): @computed_var( deps=deps, cache=True, ) def test_var(state) -> int: return 1 def test_to_string_operation(): class Email(str): ... class TestState(BaseState): optional_email: Optional[Email] = None email: Email = Email("test@reflex.dev") assert ( str(TestState.optional_email) == f"{TestState.get_full_name()}.optional_email" ) my_state = TestState() assert my_state.optional_email is None assert my_state.email == "test@reflex.dev" assert cast(Var, TestState.email)._var_type == Email assert cast(Var, TestState.optional_email)._var_type == Optional[Email]