123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312 |
- """Serializers used to convert Var types to JSON strings."""
- from __future__ import annotations
- import json
- import types as builtin_types
- from datetime import date, datetime, time, timedelta
- from typing import Any, Callable, Dict, List, Set, Tuple, Type, Union, get_type_hints
- from reflex.base import Base
- from reflex.utils import exceptions, format, types
- # Mapping from type to a serializer.
- # The serializer should convert the type to a JSON object.
- SerializedType = Union[str, bool, int, float, list, dict]
- Serializer = Callable[[Type], SerializedType]
- SERIALIZERS: dict[Type, Serializer] = {}
- def serializer(fn: Serializer) -> Serializer:
- """Decorator to add a serializer for a given type.
- Args:
- fn: The function to decorate.
- Returns:
- The decorated function.
- Raises:
- ValueError: If the function does not take a single argument.
- """
- # Get the global serializers.
- global SERIALIZERS
- # Check the type hints to get the type of the argument.
- type_hints = get_type_hints(fn)
- args = [arg for arg in type_hints if arg != "return"]
- # Make sure the function takes a single argument.
- if len(args) != 1:
- raise ValueError("Serializer must take a single argument.")
- # Get the type of the argument.
- type_ = type_hints[args[0]]
- # Make sure the type is not already registered.
- registered_fn = SERIALIZERS.get(type_)
- if registered_fn is not None and registered_fn != fn:
- raise ValueError(
- f"Serializer for type {type_} is already registered as {registered_fn.__qualname__}."
- )
- # Register the serializer.
- SERIALIZERS[type_] = fn
- # Return the function.
- return fn
- def serialize(value: Any) -> SerializedType | None:
- """Serialize the value to a JSON string.
- Args:
- value: The value to serialize.
- Returns:
- The serialized value, or None if a serializer is not found.
- """
- # Get the serializer for the type.
- serializer = get_serializer(type(value))
- # If there is no serializer, return None.
- if serializer is None:
- return None
- # Serialize the value.
- return serializer(value)
- def get_serializer(type_: Type) -> Serializer | None:
- """Get the serializer for the type.
- Args:
- type_: The type to get the serializer for.
- Returns:
- The serializer for the type, or None if there is no serializer.
- """
- global SERIALIZERS
- # First, check if the type is registered.
- serializer = SERIALIZERS.get(type_)
- if serializer is not None:
- return serializer
- # If the type is not registered, check if it is a subclass of a registered type.
- for registered_type, serializer in reversed(SERIALIZERS.items()):
- if types._issubclass(type_, registered_type):
- return serializer
- # If there is no serializer, return None.
- return None
- def has_serializer(type_: Type) -> bool:
- """Check if there is a serializer for the type.
- Args:
- type_: The type to check.
- Returns:
- Whether there is a serializer for the type.
- """
- return get_serializer(type_) is not None
- @serializer
- def serialize_type(value: type) -> str:
- """Serialize a python type.
- Args:
- value: the type to serialize.
- Returns:
- The serialized type.
- """
- return value.__name__
- @serializer
- def serialize_str(value: str) -> str:
- """Serialize a string.
- Args:
- value: The string to serialize.
- Returns:
- The serialized string.
- """
- return value
- @serializer
- def serialize_primitive(value: Union[bool, int, float, None]) -> str:
- """Serialize a primitive type.
- Args:
- value: The number/bool/None to serialize.
- Returns:
- The serialized number/bool/None.
- """
- return format.json_dumps(value)
- @serializer
- def serialize_base(value: Base) -> str:
- """Serialize a Base instance.
- Args:
- value : The Base to serialize.
- Returns:
- The serialized Base.
- """
- return value.json()
- @serializer
- def serialize_list(value: Union[List, Tuple, Set]) -> str:
- """Serialize a list to a JSON string.
- Args:
- value: The list to serialize.
- Returns:
- The serialized list.
- """
- # Dump the list to a string.
- fprop = format.json_dumps(list(value))
- # Unwrap var values.
- return format.unwrap_vars(fprop)
- @serializer
- def serialize_dict(prop: Dict[str, Any]) -> str:
- """Serialize a dictionary to a JSON string.
- Args:
- prop: The dictionary to serialize.
- Returns:
- The serialized dictionary.
- Raises:
- InvalidStylePropError: If the style prop is invalid.
- """
- # Import here to avoid circular imports.
- from reflex.event import EventHandler
- prop_dict = {}
- for key, value in prop.items():
- if types._issubclass(type(value), Callable):
- raise exceptions.InvalidStylePropError(
- f"The style prop `{format.to_snake_case(key)}` cannot have " # type: ignore
- f"`{value.fn.__qualname__ if isinstance(value, EventHandler) else value.__qualname__ if isinstance(value, builtin_types.FunctionType) else value}`, "
- f"an event handler or callable as its value"
- )
- prop_dict[key] = value
- # Dump the dict to a string.
- fprop = format.json_dumps(prop_dict)
- # Unwrap var values.
- return format.unwrap_vars(fprop)
- @serializer
- def serialize_datetime(dt: Union[date, datetime, time, timedelta]) -> str:
- """Serialize a datetime to a JSON string.
- Args:
- dt: The datetime to serialize.
- Returns:
- The serialized datetime.
- """
- return str(dt)
- try:
- from pandas import DataFrame
- def format_dataframe_values(df: DataFrame) -> List[List[Any]]:
- """Format dataframe values to a list of lists.
- Args:
- df: The dataframe to format.
- Returns:
- The dataframe as a list of lists.
- """
- return [
- [str(d) if isinstance(d, (list, tuple)) else d for d in data]
- for data in list(df.values.tolist())
- ]
- @serializer
- def serialize_dataframe(df: DataFrame) -> dict:
- """Serialize a pandas dataframe.
- Args:
- df: The dataframe to serialize.
- Returns:
- The serialized dataframe.
- """
- return {
- "columns": df.columns.tolist(),
- "data": format_dataframe_values(df),
- }
- except ImportError:
- pass
- try:
- from plotly.graph_objects import Figure
- from plotly.io import to_json
- @serializer
- def serialize_figure(figure: Figure) -> list:
- """Serialize a plotly figure.
- Args:
- figure: The figure to serialize.
- Returns:
- The serialized figure.
- """
- return json.loads(str(to_json(figure)))["data"]
- except ImportError:
- pass
- try:
- import base64
- import io
- from PIL.Image import Image as Img
- @serializer
- def serialize_image(image: Img) -> str:
- """Serialize a plotly figure.
- Args:
- image: The image to serialize.
- Returns:
- The serialized image.
- """
- buff = io.BytesIO()
- image.save(buff, format=getattr(image, "format", None) or "PNG")
- image_bytes = buff.getvalue()
- base64_image = base64.b64encode(image_bytes).decode("utf-8")
- mime_type = getattr(image, "get_format_mimetype", lambda: "image/png")()
- return f"data:{mime_type};base64,{base64_image}"
- except ImportError:
- pass
|