serializers.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494
  1. """Serializers used to convert Var types to JSON strings."""
  2. from __future__ import annotations
  3. import dataclasses
  4. import functools
  5. import json
  6. import warnings
  7. from datetime import date, datetime, time, timedelta
  8. from enum import Enum
  9. from pathlib import Path
  10. from typing import (
  11. Any,
  12. Callable,
  13. List,
  14. Literal,
  15. Optional,
  16. Set,
  17. Tuple,
  18. Type,
  19. TypeVar,
  20. Union,
  21. get_type_hints,
  22. overload,
  23. )
  24. from reflex.base import Base
  25. from reflex.constants.colors import Color, format_color
  26. from reflex.utils import types
  27. # Mapping from type to a serializer.
  28. # The serializer should convert the type to a JSON object.
  29. SerializedType = Union[str, bool, int, float, list, dict, None]
  30. Serializer = Callable[[Any], SerializedType]
  31. SERIALIZERS: dict[Type, Serializer] = {}
  32. SERIALIZER_TYPES: dict[Type, Type] = {}
  33. SERIALIZED_FUNCTION = TypeVar("SERIALIZED_FUNCTION", bound=Serializer)
  34. @overload
  35. def serializer(
  36. fn: None = None,
  37. to: Type[SerializedType] | None = None,
  38. ) -> Callable[[SERIALIZED_FUNCTION], SERIALIZED_FUNCTION]: ...
  39. @overload
  40. def serializer(
  41. fn: SERIALIZED_FUNCTION,
  42. to: Type[SerializedType] | None = None,
  43. ) -> SERIALIZED_FUNCTION: ...
  44. def serializer(
  45. fn: SERIALIZED_FUNCTION | None = None,
  46. to: Any = None,
  47. ) -> SERIALIZED_FUNCTION | Callable[[SERIALIZED_FUNCTION], SERIALIZED_FUNCTION]:
  48. """Decorator to add a serializer for a given type.
  49. Args:
  50. fn: The function to decorate.
  51. to: The type returned by the serializer. If this is `str`, then any Var created from this type will be treated as a string.
  52. Returns:
  53. The decorated function.
  54. """
  55. def wrapper(fn: SERIALIZED_FUNCTION) -> SERIALIZED_FUNCTION:
  56. # Check the type hints to get the type of the argument.
  57. type_hints = get_type_hints(fn)
  58. args = [arg for arg in type_hints if arg != "return"]
  59. # Make sure the function takes a single argument.
  60. if len(args) != 1:
  61. raise ValueError("Serializer must take a single argument.")
  62. # Get the type of the argument.
  63. type_ = type_hints[args[0]]
  64. # Make sure the type is not already registered.
  65. registered_fn = SERIALIZERS.get(type_)
  66. if registered_fn is not None and registered_fn != fn:
  67. raise ValueError(
  68. f"Serializer for type {type_} is already registered as {registered_fn.__qualname__}."
  69. )
  70. to_type = to or type_hints.get("return")
  71. # Apply type transformation if requested
  72. if to_type:
  73. SERIALIZER_TYPES[type_] = to_type
  74. get_serializer_type.cache_clear()
  75. # Register the serializer.
  76. SERIALIZERS[type_] = fn
  77. get_serializer.cache_clear()
  78. # Return the function.
  79. return fn
  80. if fn is not None:
  81. return wrapper(fn)
  82. return wrapper
  83. @overload
  84. def serialize(
  85. value: Any, get_type: Literal[True]
  86. ) -> Tuple[Optional[SerializedType], Optional[types.GenericType]]: ...
  87. @overload
  88. def serialize(value: Any, get_type: Literal[False]) -> Optional[SerializedType]: ...
  89. @overload
  90. def serialize(value: Any) -> Optional[SerializedType]: ...
  91. def serialize(
  92. value: Any, get_type: bool = False
  93. ) -> Union[
  94. Optional[SerializedType],
  95. Tuple[Optional[SerializedType], Optional[types.GenericType]],
  96. ]:
  97. """Serialize the value to a JSON string.
  98. Args:
  99. value: The value to serialize.
  100. get_type: Whether to return the type of the serialized value.
  101. Returns:
  102. The serialized value, or None if a serializer is not found.
  103. """
  104. # Get the serializer for the type.
  105. serializer = get_serializer(type(value))
  106. # If there is no serializer, return None.
  107. if serializer is None:
  108. if dataclasses.is_dataclass(value) and not isinstance(value, type):
  109. return {k.name: getattr(value, k.name) for k in dataclasses.fields(value)}
  110. if get_type:
  111. return None, None
  112. return None
  113. # Serialize the value.
  114. serialized = serializer(value)
  115. # Return the serialized value and the type.
  116. if get_type:
  117. return serialized, get_serializer_type(type(value))
  118. else:
  119. return serialized
  120. @functools.lru_cache
  121. def get_serializer(type_: Type) -> Optional[Serializer]:
  122. """Get the serializer for the type.
  123. Args:
  124. type_: The type to get the serializer for.
  125. Returns:
  126. The serializer for the type, or None if there is no serializer.
  127. """
  128. # First, check if the type is registered.
  129. serializer = SERIALIZERS.get(type_)
  130. if serializer is not None:
  131. return serializer
  132. # If the type is not registered, check if it is a subclass of a registered type.
  133. for registered_type, serializer in reversed(SERIALIZERS.items()):
  134. if types._issubclass(type_, registered_type):
  135. return serializer
  136. # If there is no serializer, return None.
  137. return None
  138. @functools.lru_cache
  139. def get_serializer_type(type_: Type) -> Optional[Type]:
  140. """Get the converted type for the type after serializing.
  141. Args:
  142. type_: The type to get the serializer type for.
  143. Returns:
  144. The serialized type for the type, or None if there is no type conversion registered.
  145. """
  146. # First, check if the type is registered.
  147. serializer = SERIALIZER_TYPES.get(type_)
  148. if serializer is not None:
  149. return serializer
  150. # If the type is not registered, check if it is a subclass of a registered type.
  151. for registered_type, serializer in reversed(SERIALIZER_TYPES.items()):
  152. if types._issubclass(type_, registered_type):
  153. return serializer
  154. # If there is no serializer, return None.
  155. return None
  156. def has_serializer(type_: Type, into_type: Type | None = None) -> bool:
  157. """Check if there is a serializer for the type.
  158. Args:
  159. type_: The type to check.
  160. into_type: The type to serialize into.
  161. Returns:
  162. Whether there is a serializer for the type.
  163. """
  164. serializer_for_type = get_serializer(type_)
  165. return serializer_for_type is not None and (
  166. into_type is None or get_serializer_type(type_) == into_type
  167. )
  168. def can_serialize(type_: Type, into_type: Type | None = None) -> bool:
  169. """Check if there is a serializer for the type.
  170. Args:
  171. type_: The type to check.
  172. into_type: The type to serialize into.
  173. Returns:
  174. Whether there is a serializer for the type.
  175. """
  176. return has_serializer(type_, into_type) or (
  177. isinstance(type_, type)
  178. and dataclasses.is_dataclass(type_)
  179. and (into_type is None or into_type is dict)
  180. )
  181. @serializer(to=str)
  182. def serialize_type(value: type) -> str:
  183. """Serialize a python type.
  184. Args:
  185. value: the type to serialize.
  186. Returns:
  187. The serialized type.
  188. """
  189. return value.__name__
  190. @serializer(to=dict)
  191. def serialize_base(value: Base) -> dict:
  192. """Serialize a Base instance.
  193. Args:
  194. value : The Base to serialize.
  195. Returns:
  196. The serialized Base.
  197. """
  198. from reflex.vars.base import Var
  199. return {
  200. k: v for k, v in value.dict().items() if isinstance(v, Var) or not callable(v)
  201. }
  202. try:
  203. from pydantic.v1 import BaseModel as BaseModelV1
  204. @serializer(to=dict)
  205. def serialize_base_model_v1(model: BaseModelV1) -> dict:
  206. """Serialize a pydantic v1 BaseModel instance.
  207. Args:
  208. model: The BaseModel to serialize.
  209. Returns:
  210. The serialized BaseModel.
  211. """
  212. return model.dict()
  213. from pydantic import BaseModel as BaseModelV2
  214. if BaseModelV1 is not BaseModelV2:
  215. @serializer(to=dict)
  216. def serialize_base_model_v2(model: BaseModelV2) -> dict:
  217. """Serialize a pydantic v2 BaseModel instance.
  218. Args:
  219. model: The BaseModel to serialize.
  220. Returns:
  221. The serialized BaseModel.
  222. """
  223. return model.model_dump()
  224. except ImportError:
  225. # Older pydantic v1 import
  226. from pydantic import BaseModel as BaseModelV1
  227. @serializer(to=dict)
  228. def serialize_base_model_v1(model: BaseModelV1) -> dict:
  229. """Serialize a pydantic v1 BaseModel instance.
  230. Args:
  231. model: The BaseModel to serialize.
  232. Returns:
  233. The serialized BaseModel.
  234. """
  235. return model.dict()
  236. @serializer
  237. def serialize_set(value: Set) -> list:
  238. """Serialize a set to a JSON serializable list.
  239. Args:
  240. value: The set to serialize.
  241. Returns:
  242. The serialized list.
  243. """
  244. return list(value)
  245. @serializer(to=str)
  246. def serialize_datetime(dt: Union[date, datetime, time, timedelta]) -> str:
  247. """Serialize a datetime to a JSON string.
  248. Args:
  249. dt: The datetime to serialize.
  250. Returns:
  251. The serialized datetime.
  252. """
  253. return str(dt)
  254. @serializer(to=str)
  255. def serialize_path(path: Path) -> str:
  256. """Serialize a pathlib.Path to a JSON string.
  257. Args:
  258. path: The path to serialize.
  259. Returns:
  260. The serialized path.
  261. """
  262. return str(path.as_posix())
  263. @serializer
  264. def serialize_enum(en: Enum) -> str:
  265. """Serialize a enum to a JSON string.
  266. Args:
  267. en: The enum to serialize.
  268. Returns:
  269. The serialized enum.
  270. """
  271. return en.value
  272. @serializer(to=str)
  273. def serialize_color(color: Color) -> str:
  274. """Serialize a color.
  275. Args:
  276. color: The color to serialize.
  277. Returns:
  278. The serialized color.
  279. """
  280. return format_color(color.color, color.shade, color.alpha)
  281. try:
  282. from pandas import DataFrame
  283. def format_dataframe_values(df: DataFrame) -> List[List[Any]]:
  284. """Format dataframe values to a list of lists.
  285. Args:
  286. df: The dataframe to format.
  287. Returns:
  288. The dataframe as a list of lists.
  289. """
  290. return [
  291. [str(d) if isinstance(d, (list, tuple)) else d for d in data]
  292. for data in list(df.values.tolist())
  293. ]
  294. @serializer
  295. def serialize_dataframe(df: DataFrame) -> dict:
  296. """Serialize a pandas dataframe.
  297. Args:
  298. df: The dataframe to serialize.
  299. Returns:
  300. The serialized dataframe.
  301. """
  302. return {
  303. "columns": df.columns.tolist(),
  304. "data": format_dataframe_values(df),
  305. }
  306. except ImportError:
  307. pass
  308. try:
  309. from plotly.graph_objects import Figure, layout
  310. from plotly.io import to_json
  311. @serializer
  312. def serialize_figure(figure: Figure) -> dict:
  313. """Serialize a plotly figure.
  314. Args:
  315. figure: The figure to serialize.
  316. Returns:
  317. The serialized figure.
  318. """
  319. return json.loads(str(to_json(figure)))
  320. @serializer
  321. def serialize_template(template: layout.Template) -> dict:
  322. """Serialize a plotly template.
  323. Args:
  324. template: The template to serialize.
  325. Returns:
  326. The serialized template.
  327. """
  328. return {
  329. "data": json.loads(str(to_json(template.data))),
  330. "layout": json.loads(str(to_json(template.layout))),
  331. }
  332. except ImportError:
  333. pass
  334. try:
  335. import base64
  336. import io
  337. from PIL.Image import MIME
  338. from PIL.Image import Image as Img
  339. @serializer
  340. def serialize_image(image: Img) -> str:
  341. """Serialize a plotly figure.
  342. Args:
  343. image: The image to serialize.
  344. Returns:
  345. The serialized image.
  346. """
  347. buff = io.BytesIO()
  348. image_format = getattr(image, "format", None) or "PNG"
  349. image.save(buff, format=image_format)
  350. image_bytes = buff.getvalue()
  351. base64_image = base64.b64encode(image_bytes).decode("utf-8")
  352. try:
  353. # Newer method to get the mime type, but does not always work.
  354. mime_type = image.get_format_mimetype() # type: ignore
  355. except AttributeError:
  356. try:
  357. # Fallback method
  358. mime_type = MIME[image_format]
  359. except KeyError:
  360. # Unknown mime_type: warn and return image/png and hope the browser can sort it out.
  361. warnings.warn( # noqa: B028
  362. f"Unknown mime type for {image} {image_format}. Defaulting to image/png"
  363. )
  364. mime_type = "image/png"
  365. return f"data:{mime_type};base64,{base64_image}"
  366. except ImportError:
  367. pass