123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516 |
- """Serializers used to convert Var types to JSON strings."""
- from __future__ import annotations
- import contextlib
- import dataclasses
- import functools
- import inspect
- import json
- import warnings
- from datetime import date, datetime, time, timedelta
- from enum import Enum
- from pathlib import Path
- from typing import (
- Any,
- Callable,
- Literal,
- Sequence,
- Set,
- Type,
- TypeVar,
- Union,
- get_type_hints,
- overload,
- )
- from uuid import UUID
- from pydantic import BaseModel as BaseModelV2
- from pydantic.v1 import BaseModel as BaseModelV1
- from reflex.base import Base
- from reflex.constants.colors import Color, format_color
- from reflex.utils import console, types
- # Mapping from type to a serializer.
- # The serializer should convert the type to a JSON object.
- SerializedType = Union[str, bool, int, float, list, dict, None]
- Serializer = Callable[[Any], SerializedType]
- SERIALIZERS: dict[Type, Serializer] = {}
- SERIALIZER_TYPES: dict[Type, Type] = {}
- SERIALIZED_FUNCTION = TypeVar("SERIALIZED_FUNCTION", bound=Serializer)
- @overload
- def serializer(
- fn: None = None,
- to: Type[SerializedType] | None = None,
- overwrite: bool | None = None,
- ) -> Callable[[SERIALIZED_FUNCTION], SERIALIZED_FUNCTION]: ...
- @overload
- def serializer(
- fn: SERIALIZED_FUNCTION,
- to: Type[SerializedType] | None = None,
- overwrite: bool | None = None,
- ) -> SERIALIZED_FUNCTION: ...
- def serializer(
- fn: SERIALIZED_FUNCTION | None = None,
- to: Any = None,
- overwrite: bool | None = None,
- ) -> SERIALIZED_FUNCTION | Callable[[SERIALIZED_FUNCTION], SERIALIZED_FUNCTION]:
- """Decorator to add a serializer for a given type.
- Args:
- fn: The function to decorate.
- to: The type returned by the serializer. If this is `str`, then any Var created from this type will be treated as a string.
- overwrite: Whether to overwrite the existing serializer.
- Returns:
- The decorated function.
- """
- def wrapper(fn: SERIALIZED_FUNCTION) -> SERIALIZED_FUNCTION:
- # Check the type hints to get the type of the argument.
- type_hints = get_type_hints(fn)
- args = [arg for arg in type_hints if arg != "return"]
- # Make sure the function takes a single argument.
- if len(args) != 1:
- raise ValueError("Serializer must take a single argument.")
- # Get the type of the argument.
- type_ = type_hints[args[0]]
- # Make sure the type is not already registered.
- registered_fn = SERIALIZERS.get(type_)
- if registered_fn is not None and registered_fn != fn and overwrite is not True:
- message = f"Overwriting serializer for type {type_} from {registered_fn.__module__}:{registered_fn.__qualname__} to {fn.__module__}:{fn.__qualname__}."
- if overwrite is False:
- raise ValueError(message)
- caller_frame = next(
- filter(
- lambda frame: frame.filename != __file__,
- inspect.getouterframes(inspect.currentframe()),
- ),
- None,
- )
- file_info = (
- f"(at {caller_frame.filename}:{caller_frame.lineno})"
- if caller_frame
- else ""
- )
- console.warn(
- f"{message} Call rx.serializer with `overwrite=True` if this is intentional. {file_info}"
- )
- to_type = to or type_hints.get("return")
- # Apply type transformation if requested
- if to_type:
- SERIALIZER_TYPES[type_] = to_type
- get_serializer_type.cache_clear()
- # Register the serializer.
- SERIALIZERS[type_] = fn
- get_serializer.cache_clear()
- # Return the function.
- return fn
- if fn is not None:
- return wrapper(fn)
- return wrapper
- @overload
- def serialize(
- value: Any, get_type: Literal[True]
- ) -> tuple[SerializedType | None, types.GenericType | None]: ...
- @overload
- def serialize(value: Any, get_type: Literal[False]) -> SerializedType | None: ...
- @overload
- def serialize(value: Any) -> SerializedType | None: ...
- def serialize(
- value: Any, get_type: bool = False
- ) -> Union[
- SerializedType | None,
- tuple[SerializedType | None, types.GenericType | None],
- ]:
- """Serialize the value to a JSON string.
- Args:
- value: The value to serialize.
- get_type: Whether to return the type of the serialized value.
- Returns:
- The serialized value, or None if a serializer is not found.
- """
- # Get the serializer for the type.
- serializer = get_serializer(type(value))
- # If there is no serializer, return None.
- if serializer is None:
- if dataclasses.is_dataclass(value) and not isinstance(value, type):
- return {k.name: getattr(value, k.name) for k in dataclasses.fields(value)}
- if get_type:
- return None, None
- return None
- # Serialize the value.
- serialized = serializer(value)
- # Return the serialized value and the type.
- if get_type:
- return serialized, get_serializer_type(type(value))
- else:
- return serialized
- @functools.lru_cache
- def get_serializer(type_: Type) -> Serializer | None:
- """Get the serializer for the type.
- Args:
- type_: The type to get the serializer for.
- Returns:
- The serializer for the type, or None if there is no serializer.
- """
- # First, check if the type is registered.
- serializer = SERIALIZERS.get(type_)
- if serializer is not None:
- return serializer
- # If the type is not registered, check if it is a subclass of a registered type.
- for registered_type, serializer in reversed(SERIALIZERS.items()):
- if types._issubclass(type_, registered_type):
- return serializer
- # If there is no serializer, return None.
- return None
- @functools.lru_cache
- def get_serializer_type(type_: Type) -> Type | None:
- """Get the converted type for the type after serializing.
- Args:
- type_: The type to get the serializer type for.
- Returns:
- The serialized type for the type, or None if there is no type conversion registered.
- """
- # First, check if the type is registered.
- serializer = SERIALIZER_TYPES.get(type_)
- if serializer is not None:
- return serializer
- # If the type is not registered, check if it is a subclass of a registered type.
- for registered_type, serializer in reversed(SERIALIZER_TYPES.items()):
- if types._issubclass(type_, registered_type):
- return serializer
- # If there is no serializer, return None.
- return None
- def has_serializer(type_: Type, into_type: Type | None = None) -> bool:
- """Check if there is a serializer for the type.
- Args:
- type_: The type to check.
- into_type: The type to serialize into.
- Returns:
- Whether there is a serializer for the type.
- """
- serializer_for_type = get_serializer(type_)
- return serializer_for_type is not None and (
- into_type is None or get_serializer_type(type_) == into_type
- )
- def can_serialize(type_: Type, into_type: Type | None = None) -> bool:
- """Check if there is a serializer for the type.
- Args:
- type_: The type to check.
- into_type: The type to serialize into.
- Returns:
- Whether there is a serializer for the type.
- """
- return has_serializer(type_, into_type) or (
- isinstance(type_, type)
- and dataclasses.is_dataclass(type_)
- and (into_type is None or into_type is dict)
- )
- @serializer(to=str)
- def serialize_type(value: type) -> str:
- """Serialize a python type.
- Args:
- value: the type to serialize.
- Returns:
- The serialized type.
- """
- return value.__name__
- @serializer(to=dict)
- def serialize_base(value: Base) -> dict:
- """Serialize a Base instance.
- Args:
- value : The Base to serialize.
- Returns:
- The serialized Base.
- """
- from reflex.vars.base import Var
- return {
- k: v for k, v in value.dict().items() if isinstance(v, Var) or not callable(v)
- }
- @serializer(to=dict)
- def serialize_base_model_v1(model: BaseModelV1) -> dict:
- """Serialize a pydantic v1 BaseModel instance.
- Args:
- model: The BaseModel to serialize.
- Returns:
- The serialized BaseModel.
- """
- return model.dict()
- if BaseModelV1 is not BaseModelV2:
- @serializer(to=dict)
- def serialize_base_model_v2(model: BaseModelV2) -> dict:
- """Serialize a pydantic v2 BaseModel instance.
- Args:
- model: The BaseModel to serialize.
- Returns:
- The serialized BaseModel.
- """
- return model.model_dump()
- @serializer
- def serialize_set(value: Set) -> list:
- """Serialize a set to a JSON serializable list.
- Args:
- value: The set to serialize.
- Returns:
- The serialized list.
- """
- return list(value)
- @serializer
- def serialize_sequence(value: Sequence) -> list:
- """Serialize a sequence to a JSON serializable list.
- Args:
- value: The sequence to serialize.
- Returns:
- The serialized list.
- """
- return list(value)
- @serializer(to=str)
- def serialize_datetime(dt: Union[date, datetime, time, timedelta]) -> str:
- """Serialize a datetime to a JSON string.
- Args:
- dt: The datetime to serialize.
- Returns:
- The serialized datetime.
- """
- return str(dt)
- @serializer(to=str)
- def serialize_path(path: Path) -> str:
- """Serialize a pathlib.Path to a JSON string.
- Args:
- path: The path to serialize.
- Returns:
- The serialized path.
- """
- return str(path.as_posix())
- @serializer
- def serialize_enum(en: Enum) -> str:
- """Serialize a enum to a JSON string.
- Args:
- en: The enum to serialize.
- Returns:
- The serialized enum.
- """
- return en.value
- @serializer(to=str)
- def serialize_uuid(uuid: UUID) -> str:
- """Serialize a UUID to a JSON string.
- Args:
- uuid: The UUID to serialize.
- Returns:
- The serialized UUID.
- """
- return str(uuid)
- @serializer(to=str)
- def serialize_color(color: Color) -> str:
- """Serialize a color.
- Args:
- color: The color to serialize.
- Returns:
- The serialized color.
- """
- return format_color(color.color, color.shade, color.alpha)
- with contextlib.suppress(ImportError):
- from pandas import DataFrame
- def format_dataframe_values(df: DataFrame) -> list[list[Any]]:
- """Format dataframe values to a list of lists.
- Args:
- df: The dataframe to format.
- Returns:
- The dataframe as a list of lists.
- """
- return [
- [str(d) if isinstance(d, (list, tuple)) else d for d in data]
- for data in list(df.values.tolist())
- ]
- @serializer
- def serialize_dataframe(df: DataFrame) -> dict:
- """Serialize a pandas dataframe.
- Args:
- df: The dataframe to serialize.
- Returns:
- The serialized dataframe.
- """
- return {
- "columns": df.columns.tolist(),
- "data": format_dataframe_values(df),
- }
- with contextlib.suppress(ImportError):
- from plotly.graph_objects import Figure, layout
- from plotly.io import to_json
- @serializer
- def serialize_figure(figure: Figure) -> dict:
- """Serialize a plotly figure.
- Args:
- figure: The figure to serialize.
- Returns:
- The serialized figure.
- """
- return json.loads(str(to_json(figure)))
- @serializer
- def serialize_template(template: layout.Template) -> dict:
- """Serialize a plotly template.
- Args:
- template: The template to serialize.
- Returns:
- The serialized template.
- """
- return {
- "data": json.loads(str(to_json(template.data))),
- "layout": json.loads(str(to_json(template.layout))),
- }
- with contextlib.suppress(ImportError):
- import base64
- import io
- from PIL.Image import MIME
- from PIL.Image import Image as Img
- @serializer
- def serialize_image(image: Img) -> str:
- """Serialize a plotly figure.
- Args:
- image: The image to serialize.
- Returns:
- The serialized image.
- """
- buff = io.BytesIO()
- image_format = getattr(image, "format", None) or "PNG"
- image.save(buff, format=image_format)
- image_bytes = buff.getvalue()
- base64_image = base64.b64encode(image_bytes).decode("utf-8")
- try:
- # Newer method to get the mime type, but does not always work.
- mime_type = image.get_format_mimetype() # pyright: ignore [reportAttributeAccessIssue]
- except AttributeError:
- try:
- # Fallback method
- mime_type = MIME[image_format]
- except KeyError:
- # Unknown mime_type: warn and return image/png and hope the browser can sort it out.
- warnings.warn( # noqa: B028
- f"Unknown mime type for {image} {image_format}. Defaulting to image/png"
- )
- mime_type = "image/png"
- return f"data:{mime_type};base64,{base64_image}"
|