123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507 |
- # Copyright 2023 Avaiga Private Limited
- #
- # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
- # the License. You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
- # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
- # specific language governing permissions and limitations under the License.
- import os
- import pathlib
- from datetime import datetime
- from time import sleep
- import modin.pandas as modin_pd
- import numpy as np
- import pandas as pd
- import pytest
- from modin.pandas.test.utils import df_equals
- from pandas.testing import assert_frame_equal
- from src.taipy.core.data._data_manager import _DataManager
- from src.taipy.core.data.csv import CSVDataNode
- from src.taipy.core.data.data_node_id import DataNodeId
- from src.taipy.core.data.operator import JoinOperator, Operator
- from src.taipy.core.exceptions.exceptions import InvalidExposedType, NoData
- from taipy.config.common.scope import Scope
- from taipy.config.config import Config
- from taipy.config.exceptions.exceptions import InvalidConfigurationId
- @pytest.fixture(scope="function", autouse=True)
- def cleanup():
- yield
- path = os.path.join(pathlib.Path(__file__).parent.resolve(), "data_sample/temp.csv")
- if os.path.isfile(path):
- os.remove(path)
- class MyCustomObject:
- def __init__(self, id, integer, text):
- self.id = id
- self.integer = integer
- self.text = text
- class TestCSVDataNode:
- def test_create(self):
- path = "data/node/path"
- dn = CSVDataNode(
- "foo_bar", Scope.SCENARIO, properties={"path": path, "has_header": False, "name": "super name"}
- )
- assert isinstance(dn, CSVDataNode)
- assert dn.storage_type() == "csv"
- assert dn.config_id == "foo_bar"
- assert dn.name == "super name"
- assert dn.scope == Scope.SCENARIO
- assert dn.id is not None
- assert dn.owner_id is None
- assert dn.last_edit_date is None
- assert dn.job_ids == []
- assert not dn.is_ready_for_reading
- assert dn.path == path
- assert dn.has_header is False
- assert dn.exposed_type == "pandas"
- with pytest.raises(InvalidConfigurationId):
- dn = CSVDataNode(
- "foo bar", Scope.SCENARIO, properties={"path": path, "has_header": False, "name": "super name"}
- )
- def test_get_user_properties(self, csv_file):
- dn_1 = CSVDataNode("dn_1", Scope.SCENARIO, properties={"path": "data/node/path"})
- assert dn_1._get_user_properties() == {}
- dn_2 = CSVDataNode(
- "dn_2",
- Scope.SCENARIO,
- properties={
- "exposed_type": "numpy",
- "default_data": "foo",
- "default_path": csv_file,
- "has_header": False,
- "foo": "bar",
- },
- )
- # exposed_type, default_data, default_path, path, has_header, sheet_name are filtered out
- assert dn_2._get_user_properties() == {"foo": "bar"}
- def test_new_csv_data_node_with_existing_file_is_ready_for_reading(self):
- not_ready_dn_cfg = Config.configure_data_node("not_ready_data_node_config_id", "csv", path="NOT_EXISTING.csv")
- not_ready_dn = _DataManager._bulk_get_or_create([not_ready_dn_cfg])[not_ready_dn_cfg]
- assert not not_ready_dn.is_ready_for_reading
- path = os.path.join(pathlib.Path(__file__).parent.resolve(), "data_sample/example.csv")
- ready_dn_cfg = Config.configure_data_node("ready_data_node_config_id", "csv", path=path)
- ready_dn = _DataManager._bulk_get_or_create([ready_dn_cfg])[ready_dn_cfg]
- assert ready_dn.is_ready_for_reading
- @pytest.mark.parametrize(
- ["properties", "exists"],
- [
- ({}, False),
- ({"default_data": ["foo", "bar"]}, True),
- ],
- )
- def test_create_with_default_data(self, properties, exists):
- dn = CSVDataNode("foo", Scope.SCENARIO, DataNodeId("dn_id"), properties=properties)
- assert os.path.exists(dn.path) is exists
- def test_read_with_header(self):
- not_existing_csv = CSVDataNode("foo", Scope.SCENARIO, properties={"path": "WRONG.csv", "has_header": True})
- with pytest.raises(NoData):
- assert not_existing_csv.read() is None
- not_existing_csv.read_or_raise()
- path = os.path.join(pathlib.Path(__file__).parent.resolve(), "data_sample/example.csv")
- # # Create CSVDataNode without exposed_type (Default is pandas.DataFrame)
- csv_data_node_as_pandas = CSVDataNode("bar", Scope.SCENARIO, properties={"path": path})
- data_pandas = csv_data_node_as_pandas.read()
- assert isinstance(data_pandas, pd.DataFrame)
- assert len(data_pandas) == 10
- assert np.array_equal(data_pandas.to_numpy(), pd.read_csv(path).to_numpy())
- # Create CSVDataNode with modin exposed_type
- csv_data_node_as_modin = CSVDataNode("bar", Scope.SCENARIO, properties={"path": path, "exposed_type": "modin"})
- data_modin = csv_data_node_as_modin.read()
- assert isinstance(data_modin, modin_pd.DataFrame)
- assert len(data_modin) == 10
- assert np.array_equal(data_modin.to_numpy(), modin_pd.read_csv(path).to_numpy())
- # Create CSVDataNode with numpy exposed_type
- csv_data_node_as_numpy = CSVDataNode(
- "bar", Scope.SCENARIO, properties={"path": path, "has_header": True, "exposed_type": "numpy"}
- )
- data_numpy = csv_data_node_as_numpy.read()
- assert isinstance(data_numpy, np.ndarray)
- assert len(data_numpy) == 10
- assert np.array_equal(data_numpy, pd.read_csv(path).to_numpy())
- # Create the same CSVDataNode but with custom exposed_type
- csv_data_node_as_custom_object = CSVDataNode(
- "bar", Scope.SCENARIO, properties={"path": path, "exposed_type": MyCustomObject}
- )
- data_custom = csv_data_node_as_custom_object.read()
- assert isinstance(data_custom, list)
- assert len(data_custom) == 10
- for (index, row_pandas), row_custom in zip(data_pandas.iterrows(), data_custom):
- assert isinstance(row_custom, MyCustomObject)
- assert row_pandas["id"] == row_custom.id
- assert str(row_pandas["integer"]) == row_custom.integer
- assert row_pandas["text"] == row_custom.text
- def test_read_without_header(self):
- not_existing_csv = CSVDataNode("foo", Scope.SCENARIO, properties={"path": "WRONG.csv", "has_header": False})
- with pytest.raises(NoData):
- assert not_existing_csv.read() is None
- not_existing_csv.read_or_raise()
- path = os.path.join(pathlib.Path(__file__).parent.resolve(), "data_sample/example.csv")
- # Create CSVDataNode without exposed_type (Default is pandas.DataFrame)
- csv_data_node_as_pandas = CSVDataNode("bar", Scope.SCENARIO, properties={"path": path, "has_header": False})
- data_pandas = csv_data_node_as_pandas.read()
- assert isinstance(data_pandas, pd.DataFrame)
- assert len(data_pandas) == 11
- assert np.array_equal(data_pandas.to_numpy(), pd.read_csv(path, header=None).to_numpy())
- # Create CSVDataNode with modin exposed_type
- csv_data_node_as_modin = CSVDataNode(
- "baz", Scope.SCENARIO, properties={"path": path, "has_header": False, "exposed_type": "modin"}
- )
- data_modin = csv_data_node_as_modin.read()
- assert isinstance(data_modin, modin_pd.DataFrame)
- assert len(data_modin) == 11
- assert np.array_equal(data_modin.to_numpy(), modin_pd.read_csv(path, header=None).to_numpy())
- # Create CSVDataNode with numpy exposed_type
- csv_data_node_as_numpy = CSVDataNode(
- "qux", Scope.SCENARIO, properties={"path": path, "has_header": False, "exposed_type": "numpy"}
- )
- data_numpy = csv_data_node_as_numpy.read()
- assert isinstance(data_numpy, np.ndarray)
- assert len(data_numpy) == 11
- assert np.array_equal(data_numpy, pd.read_csv(path, header=None).to_numpy())
- # Create the same CSVDataNode but with custom exposed_type
- csv_data_node_as_custom_object = CSVDataNode(
- "quux", Scope.SCENARIO, properties={"path": path, "has_header": False, "exposed_type": MyCustomObject}
- )
- data_custom = csv_data_node_as_custom_object.read()
- assert isinstance(data_custom, list)
- assert len(data_custom) == 11
- for (index, row_pandas), row_custom in zip(data_pandas.iterrows(), data_custom):
- assert isinstance(row_custom, MyCustomObject)
- assert row_pandas[0] == row_custom.id
- assert str(row_pandas[1]) == row_custom.integer
- assert row_pandas[2] == row_custom.text
- @pytest.mark.parametrize(
- "content",
- [
- ([{"a": 11, "b": 22, "c": 33}, {"a": 44, "b": 55, "c": 66}]),
- (pd.DataFrame([{"a": 11, "b": 22, "c": 33}, {"a": 44, "b": 55, "c": 66}])),
- ([[11, 22, 33], [44, 55, 66]]),
- ],
- )
- def test_append(self, csv_file, default_data_frame, content):
- csv_dn = CSVDataNode("foo", Scope.SCENARIO, properties={"path": csv_file})
- assert_frame_equal(csv_dn.read(), default_data_frame)
- csv_dn.append(content)
- assert_frame_equal(
- csv_dn.read(),
- pd.concat([default_data_frame, pd.DataFrame(content, columns=["a", "b", "c"])]).reset_index(drop=True),
- )
- @pytest.mark.parametrize(
- "content",
- [
- ([{"a": 11, "b": 22, "c": 33}, {"a": 44, "b": 55, "c": 66}]),
- (pd.DataFrame([{"a": 11, "b": 22, "c": 33}, {"a": 44, "b": 55, "c": 66}])),
- ([[11, 22, 33], [44, 55, 66]]),
- ],
- )
- def test_append_modin(self, csv_file, default_data_frame, content):
- csv_dn = CSVDataNode("foo", Scope.SCENARIO, properties={"path": csv_file, "exposed_type": "modin"})
- df_equals(csv_dn.read(), modin_pd.DataFrame(default_data_frame))
- csv_dn.append(content)
- df_equals(
- csv_dn.read(),
- modin_pd.concat([default_data_frame, pd.DataFrame(content, columns=["a", "b", "c"])]).reset_index(
- drop=True
- ),
- )
- @pytest.mark.parametrize(
- "content,columns",
- [
- ([{"a": 11, "b": 22, "c": 33}, {"a": 44, "b": 55, "c": 66}], None),
- ([[11, 22, 33], [44, 55, 66]], None),
- ([[11, 22, 33], [44, 55, 66]], ["e", "f", "g"]),
- ],
- )
- def test_write(self, csv_file, default_data_frame, content, columns):
- csv_dn = CSVDataNode("foo", Scope.SCENARIO, properties={"path": csv_file})
- assert np.array_equal(csv_dn.read().values, default_data_frame.values)
- if not columns:
- csv_dn.write(content)
- df = pd.DataFrame(content)
- else:
- csv_dn.write_with_column_names(content, columns)
- df = pd.DataFrame(content, columns=columns)
- assert np.array_equal(csv_dn.read().values, df.values)
- csv_dn.write(None)
- assert len(csv_dn.read()) == 0
- def test_write_with_different_encoding(self, csv_file):
- data = pd.DataFrame([{"≥a": 1, "b": 2}])
- utf8_dn = CSVDataNode("utf8_dn", Scope.SCENARIO, properties={"default_path": csv_file})
- utf16_dn = CSVDataNode("utf16_dn", Scope.SCENARIO, properties={"default_path": csv_file, "encoding": "utf-16"})
- # If a file is written with utf-8 encoding, it can only be read with utf-8, not utf-16 encoding
- utf8_dn.write(data)
- assert np.array_equal(utf8_dn.read(), data)
- with pytest.raises(UnicodeError):
- utf16_dn.read()
- # If a file is written with utf-16 encoding, it can only be read with utf-16, not utf-8 encoding
- utf16_dn.write(data)
- assert np.array_equal(utf16_dn.read(), data)
- with pytest.raises(UnicodeError):
- utf8_dn.read()
- @pytest.mark.parametrize(
- "content,columns",
- [
- ([{"a": 11, "b": 22, "c": 33}, {"a": 44, "b": 55, "c": 66}], None),
- ([[11, 22, 33], [44, 55, 66]], None),
- ([[11, 22, 33], [44, 55, 66]], ["e", "f", "g"]),
- ],
- )
- def test_write_modin(self, csv_file, default_data_frame, content, columns):
- default_data_frame = modin_pd.DataFrame(default_data_frame)
- csv_dn = CSVDataNode("foo", Scope.SCENARIO, properties={"path": csv_file, "exposed_type": "modin"})
- assert np.array_equal(csv_dn.read().values, default_data_frame.values)
- if not columns:
- csv_dn.write(content)
- df = pd.DataFrame(content)
- else:
- csv_dn.write_with_column_names(content, columns)
- df = pd.DataFrame(content, columns=columns)
- assert np.array_equal(csv_dn.read().values, df.values)
- csv_dn.write(None)
- assert len(csv_dn.read()) == 0
- def test_write_modin_with_different_encoding(self, csv_file):
- data = pd.DataFrame([{"≥a": 1, "b": 2}])
- utf8_dn = CSVDataNode("utf8_dn", Scope.SCENARIO, properties={"path": csv_file, "exposed_type": "modin"})
- utf16_dn = CSVDataNode(
- "utf16_dn", Scope.SCENARIO, properties={"path": csv_file, "exposed_type": "modin", "encoding": "utf-16"}
- )
- # If a file is written with utf-8 encoding, it can only be read with utf-8, not utf-16 encoding
- utf8_dn.write(data)
- assert np.array_equal(utf8_dn.read(), data)
- with pytest.raises(UnicodeError):
- utf16_dn.read()
- # If a file is written with utf-16 encoding, it can only be read with utf-16, not utf-8 encoding
- utf16_dn.write(data)
- assert np.array_equal(utf16_dn.read(), data)
- with pytest.raises(UnicodeError):
- utf8_dn.read()
- def test_set_path(self):
- dn = CSVDataNode("foo", Scope.SCENARIO, properties={"default_path": "foo.csv"})
- assert dn.path == "foo.csv"
- dn.path = "bar.csv"
- assert dn.path == "bar.csv"
- def test_read_write_after_modify_path(self):
- path = os.path.join(pathlib.Path(__file__).parent.resolve(), "data_sample/example.csv")
- new_path = os.path.join(pathlib.Path(__file__).parent.resolve(), "data_sample/temp.csv")
- dn = CSVDataNode("foo", Scope.SCENARIO, properties={"default_path": path})
- read_data = dn.read()
- assert read_data is not None
- dn.path = new_path
- with pytest.raises(FileNotFoundError):
- dn.read()
- dn.write(read_data)
- assert dn.read().equals(read_data)
- def test_pandas_exposed_type(self):
- path = os.path.join(pathlib.Path(__file__).parent.resolve(), "data_sample/example.csv")
- dn = CSVDataNode("foo", Scope.SCENARIO, properties={"path": path, "exposed_type": "pandas"})
- assert isinstance(dn.read(), pd.DataFrame)
- def test_filter_pandas_exposed_type(self, csv_file):
- dn = CSVDataNode("foo", Scope.SCENARIO, properties={"path": csv_file, "exposed_type": "pandas"})
- dn.write(
- [
- {"foo": 1, "bar": 1},
- {"foo": 1, "bar": 2},
- {"foo": 1},
- {"foo": 2, "bar": 2},
- {"bar": 2},
- ]
- )
- # Test datanode indexing and slicing
- assert dn["foo"].equals(pd.Series([1, 1, 1, 2, None]))
- assert dn["bar"].equals(pd.Series([1, 2, None, 2, 2]))
- assert dn[:2].equals(pd.DataFrame([{"foo": 1.0, "bar": 1.0}, {"foo": 1.0, "bar": 2.0}]))
- # Test filter data
- filtered_by_filter_method = dn.filter(("foo", 1, Operator.EQUAL))
- filtered_by_indexing = dn[dn["foo"] == 1]
- expected_data = pd.DataFrame([{"foo": 1.0, "bar": 1.0}, {"foo": 1.0, "bar": 2.0}, {"foo": 1.0}])
- assert_frame_equal(filtered_by_filter_method.reset_index(drop=True), expected_data)
- assert_frame_equal(filtered_by_indexing.reset_index(drop=True), expected_data)
- filtered_by_filter_method = dn.filter(("foo", 1, Operator.NOT_EQUAL))
- filtered_by_indexing = dn[dn["foo"] != 1]
- expected_data = pd.DataFrame([{"foo": 2.0, "bar": 2.0}, {"bar": 2.0}])
- assert_frame_equal(filtered_by_filter_method.reset_index(drop=True), expected_data)
- assert_frame_equal(filtered_by_indexing.reset_index(drop=True), expected_data)
- filtered_by_filter_method = dn.filter(("bar", 2, Operator.EQUAL))
- filtered_by_indexing = dn[dn["bar"] == 2]
- expected_data = pd.DataFrame([{"foo": 1.0, "bar": 2.0}, {"foo": 2.0, "bar": 2.0}, {"bar": 2.0}])
- assert_frame_equal(filtered_by_filter_method.reset_index(drop=True), expected_data)
- assert_frame_equal(filtered_by_indexing.reset_index(drop=True), expected_data)
- filtered_by_filter_method = dn.filter([("bar", 1, Operator.EQUAL), ("bar", 2, Operator.EQUAL)], JoinOperator.OR)
- filtered_by_indexing = dn[(dn["bar"] == 1) | (dn["bar"] == 2)]
- expected_data = pd.DataFrame(
- [
- {"foo": 1.0, "bar": 1.0},
- {"foo": 1.0, "bar": 2.0},
- {"foo": 2.0, "bar": 2.0},
- {"bar": 2.0},
- ]
- )
- assert_frame_equal(filtered_by_filter_method.reset_index(drop=True), expected_data)
- assert_frame_equal(filtered_by_indexing.reset_index(drop=True), expected_data)
- def test_filter_modin_exposed_type(self, csv_file):
- dn = CSVDataNode("foo", Scope.SCENARIO, properties={"path": csv_file, "exposed_type": "modin"})
- dn.write(
- [
- {"foo": 1, "bar": 1},
- {"foo": 1, "bar": 2},
- {"foo": 1},
- {"foo": 2, "bar": 2},
- {"bar": 2},
- ]
- )
- # Test datanode indexing and slicing
- assert dn["foo"].equals(modin_pd.Series([1, 1, 1, 2, None]))
- assert dn["bar"].equals(modin_pd.Series([1, 2, None, 2, 2]))
- assert dn[:2].equals(modin_pd.DataFrame([{"foo": 1.0, "bar": 1.0}, {"foo": 1.0, "bar": 2.0}]))
- # Test filter data
- filtered_by_filter_method = dn.filter(("foo", 1, Operator.EQUAL))
- filtered_by_indexing = dn[dn["foo"] == 1]
- expected_data = modin_pd.DataFrame([{"foo": 1.0, "bar": 1.0}, {"foo": 1.0, "bar": 2.0}, {"foo": 1.0}])
- df_equals(filtered_by_filter_method.reset_index(drop=True), expected_data)
- df_equals(filtered_by_indexing.reset_index(drop=True), expected_data)
- filtered_by_filter_method = dn.filter(("foo", 1, Operator.NOT_EQUAL))
- filtered_by_indexing = dn[dn["foo"] != 1]
- expected_data = modin_pd.DataFrame([{"foo": 2.0, "bar": 2.0}, {"bar": 2.0}])
- df_equals(filtered_by_filter_method.reset_index(drop=True), expected_data)
- df_equals(filtered_by_indexing.reset_index(drop=True), expected_data)
- filtered_by_filter_method = dn.filter(("bar", 2, Operator.EQUAL))
- filtered_by_indexing = dn[dn["bar"] == 2]
- expected_data = modin_pd.DataFrame([{"foo": 1.0, "bar": 2.0}, {"foo": 2.0, "bar": 2.0}, {"bar": 2.0}])
- df_equals(filtered_by_filter_method.reset_index(drop=True), expected_data)
- df_equals(filtered_by_indexing.reset_index(drop=True), expected_data)
- filtered_by_filter_method = dn.filter([("bar", 1, Operator.EQUAL), ("bar", 2, Operator.EQUAL)], JoinOperator.OR)
- filtered_by_indexing = dn[(dn["bar"] == 1) | (dn["bar"] == 2)]
- expected_data = modin_pd.DataFrame(
- [
- {"foo": 1.0, "bar": 1.0},
- {"foo": 1.0, "bar": 2.0},
- {"foo": 2.0, "bar": 2.0},
- {"bar": 2.0},
- ]
- )
- df_equals(filtered_by_filter_method.reset_index(drop=True), expected_data)
- df_equals(filtered_by_indexing.reset_index(drop=True), expected_data)
- def test_filter_numpy_exposed_type(self, csv_file):
- dn = CSVDataNode("foo", Scope.SCENARIO, properties={"path": csv_file, "exposed_type": "numpy"})
- dn.write(
- [
- [1, 1],
- [1, 2],
- [1, 3],
- [2, 1],
- [2, 2],
- [2, 3],
- ]
- )
- # Test datanode indexing and slicing
- assert np.array_equal(dn[0], np.array([1, 1]))
- assert np.array_equal(dn[1], np.array([1, 2]))
- assert np.array_equal(dn[:3], np.array([[1, 1], [1, 2], [1, 3]]))
- assert np.array_equal(dn[:, 0], np.array([1, 1, 1, 2, 2, 2]))
- assert np.array_equal(dn[1:4, :1], np.array([[1], [1], [2]]))
- # Test filter data
- assert np.array_equal(dn.filter((0, 1, Operator.EQUAL)), np.array([[1, 1], [1, 2], [1, 3]]))
- assert np.array_equal(dn[dn[:, 0] == 1], np.array([[1, 1], [1, 2], [1, 3]]))
- assert np.array_equal(dn.filter((0, 1, Operator.NOT_EQUAL)), np.array([[2, 1], [2, 2], [2, 3]]))
- assert np.array_equal(dn[dn[:, 0] != 1], np.array([[2, 1], [2, 2], [2, 3]]))
- assert np.array_equal(dn.filter((1, 2, Operator.EQUAL)), np.array([[1, 2], [2, 2]]))
- assert np.array_equal(dn[dn[:, 1] == 2], np.array([[1, 2], [2, 2]]))
- assert np.array_equal(
- dn.filter([(1, 1, Operator.EQUAL), (1, 2, Operator.EQUAL)], JoinOperator.OR),
- np.array([[1, 1], [1, 2], [2, 1], [2, 2]]),
- )
- assert np.array_equal(dn[(dn[:, 1] == 1) | (dn[:, 1] == 2)], np.array([[1, 1], [1, 2], [2, 1], [2, 2]]))
- def test_raise_error_invalid_exposed_type(self):
- path = os.path.join(pathlib.Path(__file__).parent.resolve(), "data_sample/example.csv")
- with pytest.raises(InvalidExposedType):
- CSVDataNode("foo", Scope.SCENARIO, properties={"path": path, "exposed_type": "foo"})
- def test_get_system_modified_date_instead_of_last_edit_date(self, tmpdir_factory):
- temp_file_path = str(tmpdir_factory.mktemp("data").join("temp.csv"))
- pd.DataFrame([]).to_csv(temp_file_path)
- dn = CSVDataNode("foo", Scope.SCENARIO, properties={"path": temp_file_path, "exposed_type": "pandas"})
- dn.write(pd.DataFrame([1, 2, 3]))
- previous_edit_date = dn.last_edit_date
- sleep(0.1)
- pd.DataFrame([4, 5, 6]).to_csv(temp_file_path)
- new_edit_date = datetime.fromtimestamp(os.path.getmtime(temp_file_path))
- assert previous_edit_date < dn.last_edit_date
- assert new_edit_date == dn.last_edit_date
- sleep(0.1)
- dn.write(pd.DataFrame([7, 8, 9]))
- assert new_edit_date < dn.last_edit_date
- os.unlink(temp_file_path)
|