scatter-classification.py 1.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445
  1. # Copyright 2021-2024 Avaiga Private Limited
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
  4. # the License. You may obtain a copy of the License at
  5. #
  6. # http://www.apache.org/licenses/LICENSE-2.0
  7. #
  8. # Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
  9. # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
  10. # specific language governing permissions and limitations under the License.
  11. # -----------------------------------------------------------------------------------------
  12. # To execute this script, make sure that the taipy-gui package is installed in your
  13. # Python environment and run:
  14. # python <script>
  15. # You may need to install the scikit-learn package as well.
  16. # -----------------------------------------------------------------------------------------
  17. import numpy
  18. import pandas
  19. from sklearn.datasets import make_classification
  20. from taipy.gui import Gui
  21. if __name__ == "__main__":
  22. # Let scikit-learn generate a random 2-class classification problem
  23. features, label = make_classification(n_samples=1000, n_features=2, n_informative=2, n_redundant=0)
  24. random_data = pandas.DataFrame({"x": features[:, 0], "y": features[:, 1], "label": label})
  25. data_x = random_data["x"]
  26. class_A = [
  27. random_data.loc[i, "y"] if random_data.loc[i, "label"] == 0 else numpy.nan for i in range(len(random_data))
  28. ]
  29. class_B = [
  30. random_data.loc[i, "y"] if random_data.loc[i, "label"] == 1 else numpy.nan for i in range(len(random_data))
  31. ]
  32. data = {"x": random_data["x"], "Class A": class_A, "Class B": class_B}
  33. page = """
  34. # Scatter - Classification
  35. <|{data}|chart|mode=markers|x=x|y[1]=Class A|y[2]=Class B|width=60%|>
  36. """
  37. Gui(page).run()