123456789101112131415161718192021222324252627282930313233343536373839404142434445 |
- # Copyright 2021-2024 Avaiga Private Limited
- #
- # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
- # the License. You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
- # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
- # specific language governing permissions and limitations under the License.
- # -----------------------------------------------------------------------------------------
- # To execute this script, make sure that the taipy-gui package is installed in your
- # Python environment and run:
- # python <script>
- # You may need to install the scikit-learn package as well.
- # -----------------------------------------------------------------------------------------
- import numpy
- import pandas
- from sklearn.datasets import make_classification
- from taipy.gui import Gui
- if __name__ == "__main__":
- # Let scikit-learn generate a random 2-class classification problem
- features, label = make_classification(n_samples=1000, n_features=2, n_informative=2, n_redundant=0)
- random_data = pandas.DataFrame({"x": features[:, 0], "y": features[:, 1], "label": label})
- data_x = random_data["x"]
- class_A = [
- random_data.loc[i, "y"] if random_data.loc[i, "label"] == 0 else numpy.nan for i in range(len(random_data))
- ]
- class_B = [
- random_data.loc[i, "y"] if random_data.loc[i, "label"] == 1 else numpy.nan for i in range(len(random_data))
- ]
- data = {"x": random_data["x"], "Class A": class_A, "Class B": class_B}
- page = """
- # Scatter - Classification
- <|{data}|chart|mode=markers|x=x|y[1]=Class A|y[2]=Class B|width=60%|>
- """
- Gui(page).run()
|