scatter_regression.py 1.6 KB

12345678910111213141516171819202122232425262728293031323334353637383940
  1. # Copyright 2021-2024 Avaiga Private Limited
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
  4. # the License. You may obtain a copy of the License at
  5. #
  6. # http://www.apache.org/licenses/LICENSE-2.0
  7. #
  8. # Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
  9. # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
  10. # specific language governing permissions and limitations under the License.
  11. # -----------------------------------------------------------------------------------------
  12. # To execute this script, make sure that the taipy-gui package is installed in your
  13. # Python environment and run:
  14. # python <script>
  15. # You may need to install the scikit-learn package as well.
  16. # -----------------------------------------------------------------------------------------
  17. from sklearn.datasets import make_regression
  18. from sklearn.linear_model import LinearRegression
  19. from taipy.gui import Gui
  20. # Let scikit-learn generate a random regression problem
  21. n_samples = 300
  22. X, y, coef = make_regression(n_samples=n_samples, n_features=1, n_informative=1, n_targets=1, noise=25, coef=True)
  23. model = LinearRegression().fit(X, y)
  24. x_data = X.flatten()
  25. y_data = y.flatten()
  26. predict = model.predict(X)
  27. data = {"x": x_data, "y": y_data, "Regression": predict}
  28. page = """
  29. <|{data}|chart|x=x|y[1]=y|mode[1]=markers|y[2]=Regression|mode[2]=line|>
  30. """
  31. if __name__ == "__main__":
  32. Gui(page).run(title="Chart - Scatter - Regression")