用于快速构建 基于python的web应用

Fabien Lelaquais 9fee734d62 Added examples for progress control (#1809) 8 ヶ月 前
.github 9fee734d62 Added examples for progress control (#1809) 8 ヶ月 前
doc 9fee734d62 Added examples for progress control (#1809) 8 ヶ月 前
frontend 9fee734d62 Added examples for progress control (#1809) 8 ヶ月 前
readme_img 94503b8d01 banner_changes (#1408) 11 ヶ月 前
taipy 9fee734d62 Added examples for progress control (#1809) 8 ヶ月 前
tests 6c2df92707 Scenario viewer update (#1803) 8 ヶ月 前
tools aa15cea280 pyarrow update to 17 (#1796) 8 ヶ月 前
.editorconfig 356260bd3b fix: update markdown format 1 年間 前
.gitattributes 7f0b872e89 Add taipy-rest package (#13) 3 年 前
.gitignore f8efa85f4e feat: remove production version 9 ヶ月 前
.license-header 569f29cc06 Change year in copyright 1 年間 前
.pre-commit-config.yaml 9fee734d62 Added examples for progress control (#1809) 8 ヶ月 前
CODE_OF_CONDUCT.md 4d3e5d6e5b Search box in scenario management elements selector control (#1310) 11 ヶ月 前
CONTRIBUTING.md 1557541a18 Update CONTRIBUTING.md 1 年間 前
INSTALLATION.md 825c84359d update react-jsx-parser (#1791) 8 ヶ月 前
LICENSE 662da8f227 Update LICENSE 1 年間 前
MANIFEST.in 356260bd3b fix: update markdown format 1 年間 前
Pipfile aa15cea280 pyarrow update to 17 (#1796) 8 ヶ月 前
README.md 2f33ab1e3c pre announcing hacktoberfest (#1806) 8 ヶ月 前
SECURITY.md 33a2151731 Create SECURITY.md 1 年間 前
contributors.txt fc6d311771 Remove hover_text from Indicator (#1282) 11 ヶ月 前
mypy.ini 9fee734d62 Added examples for progress control (#1809) 8 ヶ月 前
package_desc.md 404685dab0 fix: remove the test, contributing, and code of conduct sections from the package long description 11 ヶ月 前
pyproject.toml 9fee734d62 Added examples for progress control (#1809) 8 ヶ月 前
pytest.ini f5a18ef9f8 Remove modin dependency. compatibility is guaranteed by falling back on pandas. 1 年間 前
setup.py aa15cea280 pyarrow update to 17 (#1796) 8 ヶ月 前

README.md

Hactoberfestnew

Build Python Data & AI web applications

From simple pilots to production-ready web applications in no time.
No more compromise on performance, customization, and scalability.


**Go beyond existing libraries**


📚 Explore the docs
🫱🏼‍🫲🏼 Discord support
👀 Demos & Examples

 

⭐️ What's Taipy?

Taipy is designed for data scientists and machine learning engineers to build data & AI web applications.  

⭐️ Enables building production-ready web applications.
⭐️ No need to learn new languages. Only Python is needed.
⭐️ Concentrate on Data and AI algorithms without development and deployment complexities.

 

Taipy is a Two-in-One Tool for UI Generation and Scenario/Data Management


User Interface Generation Scenario and Data Management
Interface Animation Back-End Animation

 

✨ Key Features

Scenario Banner Back-End Animation Back-End Animation

 

⚙️ Quickstart

To install Taipy stable release run:

pip install taipy

To install Taipy on a Conda Environment or from source, please refer to the Installation Guide.
To get started with Taipy, please refer to the Getting Started Guide.

 

🔌 Scenario and Data Management

Let's create a scenario in Taipy that allows you to filter movie data based on your chosen genre.
This scenario is designed as a straightforward pipeline.
Every time you change your genre selection, the scenario runs to process your request.
It then displays the top seven most popular movies in that genre.


⚠️ Keep in mind, in this example, we're using a very basic pipeline that consists of just one task. However,
Taipy is capable of handling much more complex pipelines 🚀


Below is our filter function. This is a typical Python function and it's the only task used in this scenario.

def filter_genre(initial_dataset: pd.DataFrame, selected_genre):
    filtered_dataset = initial_dataset[initial_dataset['genres'].str.contains(selected_genre)]
    filtered_data = filtered_dataset.nlargest(7, 'Popularity %')
    return filtered_data

This is the execution graph of the scenario we are implementing

Taipy Studio

You can use the Taipy Studio extension in Visual Studio Code to configure your scenario with no code
Your configuration is automatically saved as a TOML file.
Check out Taipy Studio Documentation

For more advanced use cases or if you prefer coding your configurations instead of using Taipy Studio,
Check out the movie genre demo scenario creation with this Demo.

TaipyStudio

 

User Interface Generation and Scenario & Data Management

This simple Taipy application demonstrates how to create a basic film recommendation system using Taipy.
The application filters a dataset of films based on the user's selected genre and displays the top seven films in that genre by popularity. Here is the full code for both the frontend and backend of the application.

import taipy as tp
import pandas as pd
from taipy import Config, Scope, Gui

# Defining the helper functions

# Callback definition - submits scenario with genre selection
def on_genre_selected(state):
    scenario.selected_genre_node.write(state.selected_genre)
    tp.submit(scenario)
    state.df = scenario.filtered_data.read()

## Set initial value to Action
def on_init(state):
    on_genre_selected(state)

# Filtering function - task
def filter_genre(initial_dataset: pd.DataFrame, selected_genre):
    filtered_dataset = initial_dataset[initial_dataset["genres"].str.contains(selected_genre)]
    filtered_data = filtered_dataset.nlargest(7, "Popularity %")
    return filtered_data

# The main script
if __name__ == "__main__":
    # Taipy Scenario & Data Management

    # Load the configuration made with Taipy Studio
    Config.load("config.toml")
    scenario_cfg = Config.scenarios["scenario"]

    # Start Taipy Orchestrator
    tp.Orchestrator().run()

    # Create a scenario
    scenario = tp.create_scenario(scenario_cfg)

    # Taipy User Interface
    # Let's add a GUI to our Scenario Management for a full application

    # Get list of genres
    genres = [
        "Action", "Adventure", "Animation", "Children", "Comedy", "Fantasy", "IMAX"
        "Romance","Sci-FI", "Western", "Crime", "Mystery", "Drama", "Horror", "Thriller", "Film-Noir","War", "Musical", "Documentary"
    ]

    # Initialization of variables
    df = pd.DataFrame(columns=["Title", "Popularity %"])
    selected_genre = "Action"

    # User interface definition
    my_page = """
# Film recommendation

## Choose your favorite genre
<|{selected_genre}|selector|lov={genres}|on_change=on_genre_selected|dropdown|>

## Here are the top seven picks by popularity
<|{df}|chart|x=Title|y=Popularity %|type=bar|title=Film Popularity|>
    """

    Gui(page=my_page).run()

And the final result:

 

⚒️ Contributing

Want to help build Taipy? Check out our Contributing Guide.

🪄 Code of conduct

Want to be part of the Taipy community? Check out our Code of Conduct

🪪 License

Copyright 2021-2024 Avaiga Private Limited

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at (Apache License)http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.