12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455 |
- # Copyright 2023 Avaiga Private Limited
- #
- # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
- # the License. You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
- # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
- # specific language governing permissions and limitations under the License.
- import pickle
- import random
- from datetime import datetime, timedelta
- from typing import Any, Dict
- import pandas as pd
- n_predictions = 14
- def forecast(model, date: datetime):
- dates = [date + timedelta(days=i) for i in range(n_predictions)]
- forecasts = [f + random.uniform(0, 2) for f in model.forecast(len(dates))]
- days = [str(dt.date()) for dt in dates]
- res = {"Date": days, "Forecast": forecasts}
- return pd.DataFrame.from_dict(res)
- def evaluate(cleaned: pd.DataFrame, forecasts: pd.DataFrame, date: datetime) -> Dict[str, Any]:
- cleaned = cleaned[cleaned["Date"].isin(forecasts["Date"].tolist())]
- forecasts_as_series = pd.Series(forecasts["Forecast"].tolist(), name="Forecast")
- res = pd.concat([cleaned.reset_index(), forecasts_as_series], axis=1)
- res["Delta"] = abs(res["Forecast"] - res["Value"])
- return {
- "Date": date,
- "Dataframe": res,
- "Mean_absolute_error": res["Delta"].mean(),
- "Relative_error": (res["Delta"].mean() * 100) / res["Value"].mean(),
- }
- if __name__ == "__main__":
- model = pickle.load(open("../my_model.p", "rb"))
- day = datetime(2020, 1, 25)
- forecasts = forecast(model, day)
- historical_temperature = pd.read_csv("../historical_temperature.csv")
- evaluation = evaluate(historical_temperature, forecasts, day)
- print(evaluation["Dataframe"])
- print()
- print(f'Mean absolute error : {evaluation["Mean_absolute_error"]}')
- print(f'Relative error in %: {evaluation["Relative_error"]}')
|