test_csv_data_node.py 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431
  1. # Copyright 2021-2025 Avaiga Private Limited
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
  4. # the License. You may obtain a copy of the License at
  5. #
  6. # http://www.apache.org/licenses/LICENSE-2.0
  7. #
  8. # Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
  9. # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
  10. # specific language governing permissions and limitations under the License.
  11. import dataclasses
  12. import os
  13. import pathlib
  14. import re
  15. import uuid
  16. from datetime import datetime, timedelta
  17. from time import sleep
  18. import freezegun
  19. import numpy as np
  20. import pandas as pd
  21. import pytest
  22. from pandas.testing import assert_frame_equal
  23. from taipy import Scope
  24. from taipy.common.config import Config
  25. from taipy.common.config.exceptions.exceptions import InvalidConfigurationId
  26. from taipy.core.common._utils import _normalize_path
  27. from taipy.core.data._data_manager import _DataManager
  28. from taipy.core.data._data_manager_factory import _DataManagerFactory
  29. from taipy.core.data.csv import CSVDataNode
  30. from taipy.core.data.data_node_id import DataNodeId
  31. from taipy.core.exceptions.exceptions import InvalidExposedType
  32. from taipy.core.reason import NoFileToDownload, NotAFile
  33. @pytest.fixture(scope="function", autouse=True)
  34. def cleanup():
  35. yield
  36. path = os.path.join(pathlib.Path(__file__).parent.resolve(), "data_sample/temp.csv")
  37. if os.path.isfile(path):
  38. os.remove(path)
  39. @dataclasses.dataclass
  40. class MyCustomObject:
  41. id: int
  42. integer: int
  43. text: str
  44. class TestCSVDataNode:
  45. def test_create(self):
  46. default_path = "data/node/path"
  47. csv_dn_config = Config.configure_csv_data_node(
  48. id="foo_bar", default_path=default_path, has_header=False, name="super name"
  49. )
  50. dn = _DataManagerFactory._build_manager()._create_and_set(csv_dn_config, None, None)
  51. assert isinstance(dn, CSVDataNode)
  52. assert dn.storage_type() == "csv"
  53. assert dn.config_id == "foo_bar"
  54. assert dn.name == "super name"
  55. assert dn.scope == Scope.SCENARIO
  56. assert dn.id is not None
  57. assert dn.owner_id is None
  58. assert dn.last_edit_date is None
  59. assert dn.job_ids == []
  60. assert not dn.is_ready_for_reading
  61. assert dn.path == default_path
  62. assert dn.properties["has_header"] is False
  63. assert dn.properties["exposed_type"] == "pandas"
  64. csv_dn_config = Config.configure_csv_data_node(
  65. id="foo", default_path=default_path, has_header=True, exposed_type=MyCustomObject
  66. )
  67. dn = _DataManagerFactory._build_manager()._create_and_set(csv_dn_config, None, None)
  68. assert dn.storage_type() == "csv"
  69. assert dn.config_id == "foo"
  70. assert dn.properties["has_header"] is True
  71. assert dn.properties["exposed_type"] == MyCustomObject
  72. with pytest.raises(InvalidConfigurationId):
  73. CSVDataNode(
  74. "foo bar", Scope.SCENARIO, properties={"path": default_path, "has_header": False, "name": "super name"}
  75. )
  76. def test_modin_deprecated_in_favor_of_pandas(self):
  77. path = os.path.join(pathlib.Path(__file__).parent.resolve(), "data_sample/example.csv")
  78. # Create CSVDataNode with modin exposed_type
  79. csv_data_node_as_modin = CSVDataNode("bar", Scope.SCENARIO, properties={"path": path, "exposed_type": "modin"})
  80. assert csv_data_node_as_modin.properties["exposed_type"] == "pandas"
  81. data_modin = csv_data_node_as_modin.read()
  82. assert isinstance(data_modin, pd.DataFrame)
  83. def test_get_user_properties(self, csv_file):
  84. dn_1 = CSVDataNode("dn_1", Scope.SCENARIO, properties={"path": "data/node/path"})
  85. assert dn_1._get_user_properties() == {}
  86. dn_2 = CSVDataNode(
  87. "dn_2",
  88. Scope.SCENARIO,
  89. properties={
  90. "exposed_type": "numpy",
  91. "default_data": "foo",
  92. "default_path": csv_file,
  93. "has_header": False,
  94. "foo": "bar",
  95. },
  96. )
  97. # exposed_type, default_data, default_path, path, has_header, sheet_name are filtered out
  98. assert dn_2._get_user_properties() == {"foo": "bar"}
  99. def test_new_csv_data_node_with_existing_file_is_ready_for_reading(self):
  100. not_ready_dn_cfg = Config.configure_data_node("not_ready_data_node_config_id", "csv", path="NOT_EXISTING.csv")
  101. not_ready_dn = _DataManager._bulk_get_or_create([not_ready_dn_cfg])[not_ready_dn_cfg]
  102. assert not not_ready_dn.is_ready_for_reading
  103. path = os.path.join(pathlib.Path(__file__).parent.resolve(), "data_sample/example.csv")
  104. ready_dn_cfg = Config.configure_data_node("ready_data_node_config_id", "csv", path=path)
  105. ready_dn = _DataManager._bulk_get_or_create([ready_dn_cfg])[ready_dn_cfg]
  106. assert ready_dn.is_ready_for_reading
  107. @pytest.mark.parametrize(
  108. ["properties", "exists"],
  109. [
  110. ({}, False),
  111. ({"default_data": ["foo", "bar"]}, True),
  112. ],
  113. )
  114. def test_create_with_default_data(self, properties, exists):
  115. dn = CSVDataNode("foo", Scope.SCENARIO, DataNodeId(f"dn_id_{uuid.uuid4()}"), properties=properties)
  116. assert dn.path == f"{Config.core.storage_folder}csvs/{dn.id}.csv"
  117. assert os.path.exists(dn.path) is exists
  118. def test_set_path(self):
  119. dn = CSVDataNode("foo", Scope.SCENARIO, properties={"default_path": "foo.csv"})
  120. assert dn.path == "foo.csv"
  121. dn.path = "bar.csv"
  122. assert dn.path == "bar.csv"
  123. def test_read_write_after_modify_path(self):
  124. path = os.path.join(pathlib.Path(__file__).parent.resolve(), "data_sample/example.csv")
  125. new_path = os.path.join(pathlib.Path(__file__).parent.resolve(), "data_sample/temp.csv")
  126. dn = CSVDataNode("foo", Scope.SCENARIO, properties={"default_path": path})
  127. read_data = dn.read()
  128. assert read_data is not None
  129. dn.path = new_path
  130. with pytest.raises(FileNotFoundError):
  131. dn.read()
  132. dn.write(read_data)
  133. assert dn.read().equals(read_data)
  134. def test_pandas_exposed_type(self):
  135. path = os.path.join(pathlib.Path(__file__).parent.resolve(), "data_sample/example.csv")
  136. dn = CSVDataNode("foo", Scope.SCENARIO, properties={"path": path, "exposed_type": "pandas"})
  137. assert isinstance(dn.read(), pd.DataFrame)
  138. def test_pandas_dataframe_exposed_type(self):
  139. path = os.path.join(pathlib.Path(__file__).parent.resolve(), "data_sample/example.csv")
  140. dn = CSVDataNode("foo", Scope.SCENARIO, properties={"path": path, "exposed_type": pd.DataFrame})
  141. assert isinstance(dn.read(), pd.DataFrame)
  142. def test_pandas_dataframe_exposed_type_a(self):
  143. import pandas
  144. path = os.path.join(pathlib.Path(__file__).parent.resolve(), "data_sample/example.csv")
  145. dn = CSVDataNode("foo", Scope.SCENARIO, properties={"path": path, "exposed_type": pandas.DataFrame})
  146. assert isinstance(dn.read(), pandas.DataFrame)
  147. def test_pandas_dataframe_exposed_type_b(self):
  148. from pandas import DataFrame
  149. path = os.path.join(pathlib.Path(__file__).parent.resolve(), "data_sample/example.csv")
  150. dn = CSVDataNode("foo", Scope.SCENARIO, properties={"path": path, "exposed_type": DataFrame})
  151. assert isinstance(dn.read(), DataFrame)
  152. def test_pandas_dataframe_exposed_type_c(self):
  153. from pandas import DataFrame as DF
  154. path = os.path.join(pathlib.Path(__file__).parent.resolve(), "data_sample/example.csv")
  155. dn = CSVDataNode("foo", Scope.SCENARIO, properties={"path": path, "exposed_type": DF})
  156. assert isinstance(dn.read(), DF)
  157. def test_numpy_ndarray_exposed_type(self):
  158. path = os.path.join(pathlib.Path(__file__).parent.resolve(), "data_sample/example.csv")
  159. dn = CSVDataNode("foo", Scope.SCENARIO, properties={"path": path, "exposed_type": np.ndarray})
  160. assert isinstance(dn.read(), np.ndarray)
  161. def test_numpy_ndarray_exposed_type_a(self):
  162. import numpy
  163. path = os.path.join(pathlib.Path(__file__).parent.resolve(), "data_sample/example.csv")
  164. dn = CSVDataNode("foo", Scope.SCENARIO, properties={"path": path, "exposed_type": numpy.ndarray})
  165. assert isinstance(dn.read(), numpy.ndarray)
  166. def test_numpy_ndarray_exposed_type_b(self):
  167. from numpy import ndarray
  168. path = os.path.join(pathlib.Path(__file__).parent.resolve(), "data_sample/example.csv")
  169. dn = CSVDataNode("foo", Scope.SCENARIO, properties={"path": path, "exposed_type": ndarray})
  170. assert isinstance(dn.read(), ndarray)
  171. def test_numpy_ndarray_exposed_type_c(self):
  172. from numpy import ndarray as nd_array
  173. path = os.path.join(pathlib.Path(__file__).parent.resolve(), "data_sample/example.csv")
  174. dn = CSVDataNode("foo", Scope.SCENARIO, properties={"path": path, "exposed_type": nd_array})
  175. assert isinstance(dn.read(), nd_array)
  176. def test_raise_error_invalid_exposed_type(self):
  177. path = os.path.join(pathlib.Path(__file__).parent.resolve(), "data_sample/example.csv")
  178. with pytest.raises(InvalidExposedType):
  179. CSVDataNode("foo", Scope.SCENARIO, properties={"path": path, "exposed_type": "foo"})
  180. def test_get_system_modified_date_instead_of_last_edit_date(self, tmpdir_factory):
  181. temp_file_path = str(tmpdir_factory.mktemp("data").join("temp.csv"))
  182. pd.DataFrame([]).to_csv(temp_file_path)
  183. dn = CSVDataNode("foo", Scope.SCENARIO, properties={"path": temp_file_path, "exposed_type": "pandas"})
  184. dn.write(pd.DataFrame([1, 2, 3]))
  185. previous_edit_date = dn.last_edit_date
  186. sleep(0.1)
  187. pd.DataFrame([4, 5, 6]).to_csv(temp_file_path)
  188. new_edit_date = datetime.fromtimestamp(os.path.getmtime(temp_file_path))
  189. assert previous_edit_date < dn.last_edit_date
  190. assert new_edit_date == dn.last_edit_date
  191. sleep(0.1)
  192. dn.write(pd.DataFrame([7, 8, 9]))
  193. assert new_edit_date < dn.last_edit_date
  194. os.unlink(temp_file_path)
  195. def test_migrate_to_new_path(self, tmp_path):
  196. _base_path = os.path.join(tmp_path, ".data")
  197. path = os.path.join(_base_path, "test.csv")
  198. # create a file on old path
  199. os.mkdir(_base_path)
  200. with open(path, "w"):
  201. pass
  202. dn = CSVDataNode("foo", Scope.SCENARIO, properties={"path": path, "exposed_type": "pandas"})
  203. assert ".data" not in dn.path
  204. assert os.path.exists(dn.path)
  205. def test_is_downloadable(self):
  206. path = os.path.join(pathlib.Path(__file__).parent.resolve(), "data_sample/example.csv")
  207. dn = CSVDataNode("foo", Scope.SCENARIO, properties={"path": path, "exposed_type": "pandas"})
  208. reasons = dn.is_downloadable()
  209. assert reasons
  210. assert reasons.reasons == ""
  211. def test_is_not_downloadable_no_file(self):
  212. path = os.path.join(pathlib.Path(__file__).parent.resolve(), "data_sample/wrong_example.csv")
  213. dn = CSVDataNode("foo", Scope.SCENARIO, properties={"path": path, "exposed_type": "pandas"})
  214. reasons = dn.is_downloadable()
  215. assert not reasons
  216. assert len(reasons._reasons) == 1
  217. assert str(NoFileToDownload(_normalize_path(path), dn.id)) in reasons.reasons
  218. def test_is_not_downloadable_not_a_file(self):
  219. path = os.path.join(pathlib.Path(__file__).parent.resolve(), "data_sample")
  220. dn = CSVDataNode("foo", Scope.SCENARIO, properties={"path": path, "exposed_type": "pandas"})
  221. reasons = dn.is_downloadable()
  222. assert not reasons
  223. assert len(reasons._reasons) == 1
  224. assert str(NotAFile(_normalize_path(path), dn.id)) in reasons.reasons
  225. def test_get_downloadable_path(self):
  226. path = os.path.join(pathlib.Path(__file__).parent.resolve(), "data_sample/example.csv")
  227. dn = CSVDataNode("foo", Scope.SCENARIO, properties={"path": path, "exposed_type": "pandas"})
  228. assert re.split(r"[\\/]", dn._get_downloadable_path()) == re.split(r"[\\/]", path)
  229. def test_get_downloadable_path_with_not_existing_file(self):
  230. dn = CSVDataNode("foo", Scope.SCENARIO, properties={"path": "NOT_EXISTING.csv", "exposed_type": "pandas"})
  231. assert dn._get_downloadable_path() == ""
  232. def is_uploadable(self):
  233. path = os.path.join(pathlib.Path(__file__).parent.resolve(), "data_sample/example.csv")
  234. dn = CSVDataNode("foo", Scope.SCENARIO, properties={"path": path, "exposed_type": "pandas"})
  235. assert dn.is_uploadable()
  236. def test_upload(self, csv_file, tmpdir_factory):
  237. old_csv_path = tmpdir_factory.mktemp("data").join("df.csv").strpath
  238. old_data = pd.DataFrame([{"a": 0, "b": 1, "c": 2}, {"a": 3, "b": 4, "c": 5}])
  239. dn = CSVDataNode("foo", Scope.SCENARIO, properties={"path": old_csv_path, "exposed_type": "pandas"})
  240. dn.write(old_data)
  241. old_last_edit_date = dn.last_edit_date
  242. upload_content = pd.read_csv(csv_file)
  243. with freezegun.freeze_time(old_last_edit_date + timedelta(seconds=1)):
  244. dn._upload(csv_file)
  245. assert_frame_equal(dn.read(), upload_content) # The content of the dn should change to the uploaded content
  246. assert dn.last_edit_date > old_last_edit_date
  247. assert dn.path == _normalize_path(old_csv_path) # The path of the dn should not change
  248. def test_upload_fails_if_data_node_locked(self, csv_file, tmpdir_factory):
  249. old_csv_path = tmpdir_factory.mktemp("data").join("df.csv").strpath
  250. old_data = pd.DataFrame([{"a": 0, "b": 1, "c": 2}, {"a": 3, "b": 4, "c": 5}])
  251. dn = CSVDataNode("foo", Scope.SCENARIO, properties={"path": old_csv_path, "exposed_type": "pandas"})
  252. dn.write(old_data)
  253. upload_content = pd.read_csv(csv_file)
  254. dn.lock_edit("editor_id_1")
  255. reasons = dn._upload(csv_file, editor_id="editor_id_2")
  256. assert not reasons
  257. assert dn._upload(csv_file, editor_id="editor_id_1")
  258. assert_frame_equal(dn.read(), upload_content) # The content of the dn should change to the uploaded content
  259. def test_upload_with_upload_check_with_exception(self, csv_file, tmpdir_factory, caplog):
  260. old_csv_path = tmpdir_factory.mktemp("data").join("df.csv").strpath
  261. dn = CSVDataNode("foo", Scope.SCENARIO, properties={"path": old_csv_path, "exposed_type": "pandas"})
  262. def check_with_exception(upload_path, upload_data):
  263. raise Exception("An error with check_with_exception")
  264. reasons = dn._upload(csv_file, upload_checker=check_with_exception)
  265. assert bool(reasons) is False
  266. assert (
  267. f"Error with the upload checker `check_with_exception` "
  268. f"while checking `df.csv` file for upload to the data "
  269. f"node `{dn.id}`:" in caplog.text
  270. )
  271. def test_upload_with_upload_check_pandas(self, csv_file, tmpdir_factory):
  272. old_csv_path = tmpdir_factory.mktemp("data").join("df.csv").strpath
  273. old_data = pd.DataFrame([{"a": 0, "b": 1, "c": 2}, {"a": 3, "b": 4, "c": 5}])
  274. dn = CSVDataNode("foo", Scope.SCENARIO, properties={"path": old_csv_path, "exposed_type": "pandas"})
  275. dn.write(old_data)
  276. old_last_edit_date = dn.last_edit_date
  277. def check_data_column(upload_path, upload_data):
  278. return upload_path.endswith(".csv") and upload_data.columns.tolist() == ["a", "b", "c"]
  279. not_exists_csv_path = tmpdir_factory.mktemp("data").join("not_exists.csv").strpath
  280. reasons = dn._upload(not_exists_csv_path, upload_checker=check_data_column)
  281. assert bool(reasons) is False
  282. assert (
  283. str(list(reasons._reasons[dn.id])[0]) == "The uploaded file not_exists.csv can not be read,"
  284. f' therefore is not a valid data file for data node "{dn.id}"'
  285. )
  286. not_csv_path = tmpdir_factory.mktemp("data").join("wrong_format_df.not_csv").strpath
  287. old_data.to_csv(not_csv_path, index=False)
  288. # The upload should fail when the file is not a csv
  289. reasons = dn._upload(not_csv_path, upload_checker=check_data_column)
  290. assert bool(reasons) is False
  291. assert (
  292. str(list(reasons._reasons[dn.id])[0])
  293. == f'The uploaded file wrong_format_df.not_csv has invalid data for data node "{dn.id}"'
  294. )
  295. wrong_format_csv_path = tmpdir_factory.mktemp("data").join("wrong_format_df.csv").strpath
  296. pd.DataFrame([{"a": 1, "b": 2, "d": 3}, {"a": 4, "b": 5, "d": 6}]).to_csv(wrong_format_csv_path, index=False)
  297. # The upload should fail when check_data_column() return False
  298. reasons = dn._upload(wrong_format_csv_path, upload_checker=check_data_column)
  299. assert bool(reasons) is False
  300. assert (
  301. str(list(reasons._reasons[dn.id])[0])
  302. == f'The uploaded file wrong_format_df.csv has invalid data for data node "{dn.id}"'
  303. )
  304. assert_frame_equal(dn.read(), old_data) # The content of the dn should not change when upload fails
  305. assert dn.last_edit_date == old_last_edit_date # The last edit date should not change when upload fails
  306. assert dn.path == _normalize_path(old_csv_path) # The path of the dn should not change
  307. # The upload should succeed when check_data_column() return True
  308. assert dn._upload(csv_file, upload_checker=check_data_column)
  309. def test_upload_with_upload_check_numpy(self, tmpdir_factory):
  310. old_csv_path = tmpdir_factory.mktemp("data").join("df.csv").strpath
  311. old_data = np.array([[1, 2, 3], [4, 5, 6]])
  312. new_csv_path = tmpdir_factory.mktemp("data").join("new_upload_data.csv").strpath
  313. new_data = np.array([[1, 2, 3], [4, 5, 6]])
  314. pd.DataFrame(new_data).to_csv(new_csv_path, index=False)
  315. dn = CSVDataNode("foo", Scope.SCENARIO, properties={"path": old_csv_path, "exposed_type": "numpy"})
  316. dn.write(old_data)
  317. old_last_edit_date = dn.last_edit_date
  318. def check_data_is_positive(upload_path, upload_data):
  319. return upload_path.endswith(".csv") and np.all(upload_data > 0)
  320. not_exists_csv_path = tmpdir_factory.mktemp("data").join("not_exists.csv").strpath
  321. reasons = dn._upload(not_exists_csv_path, upload_checker=check_data_is_positive)
  322. assert bool(reasons) is False
  323. assert (
  324. str(list(reasons._reasons[dn.id])[0]) == "The uploaded file not_exists.csv can not be read"
  325. f', therefore is not a valid data file for data node "{dn.id}"'
  326. )
  327. not_csv_path = tmpdir_factory.mktemp("data").join("wrong_format_df.not_csv").strpath
  328. pd.DataFrame(old_data).to_csv(not_csv_path, index=False)
  329. # The upload should fail when the file is not a csv
  330. reasons = dn._upload(not_csv_path, upload_checker=check_data_is_positive)
  331. assert bool(reasons) is False
  332. assert (
  333. str(list(reasons._reasons[dn.id])[0])
  334. == f'The uploaded file wrong_format_df.not_csv has invalid data for data node "{dn.id}"'
  335. )
  336. wrong_format_csv_path = tmpdir_factory.mktemp("data").join("wrong_format_df.csv").strpath
  337. pd.DataFrame(np.array([[-1, 2, 3], [-4, -5, -6]])).to_csv(wrong_format_csv_path, index=False)
  338. # The upload should fail when check_data_is_positive() return False
  339. reasons = dn._upload(wrong_format_csv_path, upload_checker=check_data_is_positive)
  340. assert bool(reasons) is False
  341. assert (
  342. str(list(reasons._reasons[dn.id])[0])
  343. == f'The uploaded file wrong_format_df.csv has invalid data for data node "{dn.id}"'
  344. )
  345. np.array_equal(dn.read(), old_data) # The content of the dn should not change when upload fails
  346. assert dn.last_edit_date == old_last_edit_date # The last edit date should not change when upload fails
  347. assert dn.path == _normalize_path(old_csv_path) # The path of the dn should not change
  348. # The upload should succeed when check_data_is_positive() return True
  349. assert dn._upload(new_csv_path, upload_checker=check_data_is_positive)