123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204 |
- # Copyright 2021-2024 Avaiga Private Limited
- #
- # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
- # the License. You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
- # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
- # specific language governing permissions and limitations under the License.
- import csv
- from datetime import datetime, timedelta
- from typing import Any, Dict, List, Optional, Set
- import numpy as np
- import pandas as pd
- from taipy.config.common.scope import Scope
- from .._version._version_manager_factory import _VersionManagerFactory
- from ..job.job_id import JobId
- from ._file_datanode_mixin import _FileDataNodeMixin
- from ._tabular_datanode_mixin import _TabularDataNodeMixin
- from .data_node import DataNode
- from .data_node_id import DataNodeId, Edit
- class CSVDataNode(DataNode, _FileDataNodeMixin, _TabularDataNodeMixin):
- """Data Node stored as a CSV file.
- Attributes:
- config_id (str): Identifier of the data node configuration. This string must be a valid
- Python identifier.
- scope (Scope^): The scope of this data node.
- id (str): The unique identifier of this data node.
- owner_id (str): The identifier of the owner (sequence_id, scenario_id, cycle_id) or `None`.
- parent_ids (Optional[Set[str]]): The identifiers of the parent tasks or `None`.
- last_edit_date (datetime): The date and time of the last modification.
- edits (List[Edit^]): The ordered list of edits for that job.
- version (str): The string indicates the application version of the data node to instantiate. If not provided,
- the current version is used.
- validity_period (Optional[timedelta]): The duration implemented as a timedelta since the last edit date for
- which the data node can be considered up-to-date. Once the validity period has passed, the data node is
- considered stale and relevant tasks will run even if they are skippable (see the
- [Task management page](../core/entities/task-mgt.md) for more details).
- If _validity_period_ is set to `None`, the data node is always up-to-date.
- edit_in_progress (bool): True if a task computing the data node has been submitted
- and not completed yet. False otherwise.
- editor_id (Optional[str]): The identifier of the user who is currently editing the data node.
- editor_expiration_date (Optional[datetime]): The expiration date of the editor lock.
- path (str): The path to the CSV file.
- properties (dict[str, Any]): A dictionary of additional properties. The _properties_
- must have a _"default_path"_ or _"path"_ entry with the path of the CSV file:
- - _"default_path"_ `(str)`: The default path of the CSV file.\n
- - _"encoding"_ `(str)`: The encoding of the CSV file. The default value is `utf-8`.\n
- - _"default_data"_: The default data of the data nodes instantiated from this csv data node.\n
- - _"has_header"_ `(bool)`: If True, indicates that the CSV file has a header.\n
- - _"exposed_type"_: The exposed type of the data read from CSV file. The default value is `pandas`.\n
- """
- __STORAGE_TYPE = "csv"
- __ENCODING_KEY = "encoding"
- _REQUIRED_PROPERTIES: List[str] = []
- def __init__(
- self,
- config_id: str,
- scope: Scope,
- id: Optional[DataNodeId] = None,
- owner_id: Optional[str] = None,
- parent_ids: Optional[Set[str]] = None,
- last_edit_date: Optional[datetime] = None,
- edits: Optional[List[Edit]] = None,
- version: Optional[str] = None,
- validity_period: Optional[timedelta] = None,
- edit_in_progress: bool = False,
- editor_id: Optional[str] = None,
- editor_expiration_date: Optional[datetime] = None,
- properties: Optional[Dict] = None,
- ):
- self.id = id or self._new_id(config_id)
- if properties is None:
- properties = {}
- if self.__ENCODING_KEY not in properties.keys():
- properties[self.__ENCODING_KEY] = "utf-8"
- if self._HAS_HEADER_PROPERTY not in properties.keys():
- properties[self._HAS_HEADER_PROPERTY] = True
- properties[self._EXPOSED_TYPE_PROPERTY] = _TabularDataNodeMixin._get_valid_exposed_type(properties)
- self._check_exposed_type(properties[self._EXPOSED_TYPE_PROPERTY])
- default_value = properties.pop(self._DEFAULT_DATA_KEY, None)
- _FileDataNodeMixin.__init__(self, properties)
- _TabularDataNodeMixin.__init__(self, **properties)
- DataNode.__init__(
- self,
- config_id,
- scope,
- self.id,
- owner_id,
- parent_ids,
- last_edit_date,
- edits,
- version or _VersionManagerFactory._build_manager()._get_latest_version(),
- validity_period,
- edit_in_progress,
- editor_id,
- editor_expiration_date,
- **properties,
- )
- self._write_default_data(default_value)
- self._TAIPY_PROPERTIES.update(
- {
- self._PATH_KEY,
- self._DEFAULT_PATH_KEY,
- self._DEFAULT_DATA_KEY,
- self._IS_GENERATED_KEY,
- self._HAS_HEADER_PROPERTY,
- self._EXPOSED_TYPE_PROPERTY,
- self.__ENCODING_KEY,
- }
- )
- @classmethod
- def storage_type(cls) -> str:
- return cls.__STORAGE_TYPE
- def _read(self):
- if self.properties[self._EXPOSED_TYPE_PROPERTY] == self._EXPOSED_TYPE_PANDAS:
- return self._read_as_pandas_dataframe()
- if self.properties[self._EXPOSED_TYPE_PROPERTY] == self._EXPOSED_TYPE_NUMPY:
- return self._read_as_numpy()
- return self._read_as()
- def _read_as(self):
- with open(self._path, encoding=self.properties[self.__ENCODING_KEY]) as csvFile:
- if self.properties[self._HAS_HEADER_PROPERTY]:
- reader = csv.DictReader(csvFile)
- else:
- reader = csv.reader(csvFile)
- return [self._decoder(line) for line in reader]
- def _read_as_numpy(self) -> np.ndarray:
- return self._read_as_pandas_dataframe().to_numpy()
- def _read_as_pandas_dataframe(
- self, usecols: Optional[List[int]] = None, column_names: Optional[List[str]] = None
- ) -> pd.DataFrame:
- try:
- if self.properties[self._HAS_HEADER_PROPERTY]:
- if column_names:
- return pd.read_csv(self._path, encoding=self.properties[self.__ENCODING_KEY])[column_names]
- return pd.read_csv(self._path, encoding=self.properties[self.__ENCODING_KEY])
- else:
- if usecols:
- return pd.read_csv(
- self._path, encoding=self.properties[self.__ENCODING_KEY], header=None, usecols=usecols
- )
- return pd.read_csv(self._path, encoding=self.properties[self.__ENCODING_KEY], header=None)
- except pd.errors.EmptyDataError:
- return pd.DataFrame()
- def _append(self, data: Any):
- if isinstance(data, pd.DataFrame):
- data.to_csv(self._path, mode="a", index=False, encoding=self.properties[self.__ENCODING_KEY], header=False)
- else:
- pd.DataFrame(data).to_csv(
- self._path, mode="a", index=False, encoding=self.properties[self.__ENCODING_KEY], header=False
- )
- def _write(self, data: Any):
- exposed_type = self.properties[self._EXPOSED_TYPE_PROPERTY]
- if self.properties[self._HAS_HEADER_PROPERTY]:
- self._convert_data_to_dataframe(exposed_type, data).to_csv(
- self._path, index=False, encoding=self.properties[self.__ENCODING_KEY]
- )
- else:
- self._convert_data_to_dataframe(exposed_type, data).to_csv(
- self._path, index=False, encoding=self.properties[self.__ENCODING_KEY], header=None
- )
- def write_with_column_names(self, data: Any, columns: Optional[List[str]] = None, job_id: Optional[JobId] = None):
- """Write a selection of columns.
- Parameters:
- data (Any): The data to write.
- columns (Optional[List[str]]): The list of column names to write.
- job_id (JobId^): An optional identifier of the writer.
- """
- df = self._convert_data_to_dataframe(self.properties[self._EXPOSED_TYPE_PROPERTY], data)
- if columns and isinstance(df, pd.DataFrame):
- df.columns = columns
- df.to_csv(self._path, index=False, encoding=self.properties[self.__ENCODING_KEY])
- self.track_edit(timestamp=datetime.now(), job_id=job_id)
|